A spectral approach for quenched limit theorems for random hyperbolic dynamical systems
HTML articles powered by AMS MathViewer
- by D. Dragičević, G. Froyland, C. González-Tokman and S. Vaienti PDF
- Trans. Amer. Math. Soc. 373 (2020), 629-664 Request permission
Abstract:
We extend the recent spectral approach for quenched limit theorems developed for piecewise expanding dynamics under general random driving to quenched random piecewise hyperbolic dynamics.
For general ergodic sequences of maps in a neighborhood of a hyperbolic map we prove a quenched large deviations principle (LDP), central limit theorem (CLT), and local central limit theorem (LCLT).
References
- V. I. Bakhtin, Random processes generated by a hyperbolic sequence of mappings. I, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 2, 40–72 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 44 (1995), no. 2, 247–279. MR 1275901, DOI 10.1070/IM1995v044n02ABEH001596
- Viviane Baladi, The quest for the ultimate anisotropic Banach space, J. Stat. Phys. 166 (2017), no. 3-4, 525–557. MR 3607580, DOI 10.1007/s10955-016-1663-0
- Anne Broise, Transformations dilatantes de l’intervalle et théorèmes limites, Astérisque 238 (1996), 1–109 (French, with English and French summaries). Études spectrales d’opérateurs de transfert et applications. MR 1634271
- Jérôme Buzzi, Exponential decay of correlations for random Lasota-Yorke maps, Comm. Math. Phys. 208 (1999), no. 1, 25–54. MR 1729876, DOI 10.1007/s002200050746
- Jean-Pierre Conze, private communication.
- Jean-Pierre Conze and Albert Raugi, Limit theorems for sequential expanding dynamical systems on $[0,1]$, Ergodic theory and related fields, Contemp. Math., vol. 430, Amer. Math. Soc., Providence, RI, 2007, pp. 89–121. MR 2331327, DOI 10.1090/conm/430/08253
- Mark F. Demers and Carlangelo Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4777–4814. MR 2403704, DOI 10.1090/S0002-9947-08-04464-4
- Mark F. Demers and Hong-Kun Zhang, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn. 5 (2011), no. 4, 665–709. MR 2903754, DOI 10.3934/jmd.2011.5.665
- Mark F. Demers and Hong-Kun Zhang, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys. 324 (2013), no. 3, 767–830. MR 3123537, DOI 10.1007/s00220-013-1820-0
- D. Dragičević, G. Froyland, C. González-Tokman, and S. Vaienti, Almost sure invariance principle for random piecewise expanding maps, Nonlinearity 31 (2018), no. 5, 2252–2280. MR 3816673, DOI 10.1088/1361-6544/aaaf4b
- D. Dragičević, G. Froyland, C. González-Tokman, and S. Vaienti, A spectral approach for quenched limit theorems for random expanding dynamical systems, Comm. Math. Phys. 360 (2018), no. 3, 1121–1187. MR 3803820, DOI 10.1007/s00220-017-3083-7
- Gary Froyland, Simon Lloyd, and Anthony Quas, A semi-invertible Oseledets theorem with applications to transfer operator cocycles, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 3835–3860. MR 3038042, DOI 10.3934/dcds.2013.33.3835
- Cecilia González-Tokman and Anthony Quas, A semi-invertible operator Oseledets theorem, Ergodic Theory Dynam. Systems 34 (2014), no. 4, 1230–1272. MR 3227155, DOI 10.1017/etds.2012.189
- Sébastien Gouëzel, Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 6, 997–1024 (English, with English and French summaries). MR 2172207, DOI 10.1016/j.anihpb.2004.09.002
- Sébastien Gouëzel, Almost sure invariance principle for dynamical systems by spectral methods, Ann. Probab. 38 (2010), no. 4, 1639–1671. MR 2663640, DOI 10.1214/10-AOP525
- Sébastien Gouëzel, Limit theorems in dynamical systems using the spectral method, Hyperbolic dynamics, fluctuations and large deviations, Proc. Sympos. Pure Math., vol. 89, Amer. Math. Soc., Providence, RI, 2015, pp. 161–193. MR 3309098, DOI 10.1090/pspum/089/01487
- Sébastien Gouëzel and Carlangelo Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 189–217. MR 2201945, DOI 10.1017/S0143385705000374
- Y. Guivarc’h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), no. 1, 73–98 (French, with English summary). MR 937957
- Yeor Hafouta and Yuri Kifer, Nonconventional limit theorems and random dynamics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. MR 3793181, DOI 10.1142/10849
- Hubert Hennion and Loïc Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Mathematics, vol. 1766, Springer-Verlag, Berlin, 2001. MR 1862393, DOI 10.1007/b87874
- Gerhard Keller and Tomasz Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), no. 1, 31–69. MR 1182410, DOI 10.1007/BF02096623
- Yuri Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc. 321 (1990), no. 2, 505–524. MR 1025756, DOI 10.1090/S0002-9947-1990-1025756-7
- Yuri Kifer, Equilibrium states for random expanding transformations, Random Comput. Dynam. 1 (1992/93), no. 1, 1–31. MR 1181378
- Yuri Kifer, Limit theorems for random transformations and processes in random environments, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1481–1518. MR 1451607, DOI 10.1090/S0002-9947-98-02068-6
- John N. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 479–483. MR 0248879, DOI 10.1016/S1385-7258(68)50059-3
- Takehiko Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition, J. Math. Soc. Japan 46 (1994), no. 2, 309–343. MR 1264944, DOI 10.2969/jmsj/04620309
- S. V. Nagaev, Some limit theorems for stationary Markov chains, Teor. Veroyatnost. i Primenen. 2 (1957), 389–416 (Russian, with English summary). MR 0094846
- S. V. Nagaev, More exact limit theorems for homogeneous Markov chains, Teor. Verojatnost. i Primenen. 6 (1961), 67–86 (Russian, with English summary). MR 0131291
- Luc Rey-Bellet and Lai-Sang Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems 28 (2008), no. 2, 587–612. MR 2408394, DOI 10.1017/S0143385707000478
- J. Rousseau-Egele, Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Ann. Probab. 11 (1983), no. 3, 772–788 (French, with English summary). MR 704569, DOI 10.1214/aop/1176993522
- Domokos Szász and Tamás Varjú, Local limit theorem for the Lorentz process and its recurrence in the plane, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 257–278. MR 2041271, DOI 10.1017/S0143385703000439
- P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 1, 49–97 (French, with English summary). MR 877991, DOI 10.1016/S0294-1449(16)30373-0
Additional Information
- D. Dragičević
- Affiliation: Department of Mathematics, University of Rijeka, 51000, Rijeka, Croatia
- Email: ddragicevic@math.uniri.hr
- G. Froyland
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
- MR Author ID: 601207
- Email: G.Froyland@unsw.edu.au
- C. González-Tokman
- Affiliation: School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072, Australia
- Email: cecilia.gt@uq.edu.au
- S. Vaienti
- Affiliation: Aix Marseille Université, Université de Toulon, CNRS, CPT, 13009 Marseille, France
- MR Author ID: 176525
- Email: vaienti@cpt.univ-mrs.fr
- Received by editor(s): December 10, 2018
- Received by editor(s) in revised form: April 29, 2019, May 2, 2019, July 2, 2019, and July 5, 2019
- Published electronically: September 12, 2019
- Additional Notes: The first author was supported by the Croatian Science Foundation under the project IP-2014-09-2285 and by the University of Rijeka under the project number uniri-prirod-18-9
The second and third authors thank AMU, CPT, and CIRM (Marseille) for hospitality during this research
The second author was partially supported by an ARC Discovery project
The third author was supported by an ARC DECRA
The fourth author was supported by the MATH AM-Sud Project Physeco and by the project APEX Systèmes dynamiques: Probabilitès et Approximation Diophantienne PAD funded by the Région PACA (France). The fourth author warmly thanks the LabEx Archiméde (AMU University, Marseille), the Laboratoire International Associé LIA LYSM, the INdAM (Italy), and the UMI-CNRS 3483, Laboratoire Fibonacci (Pisa), where this work was completed under a CNRS delegation - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 629-664
- MSC (2010): Primary 37D20, 60F05
- DOI: https://doi.org/10.1090/tran/7943
- MathSciNet review: 4042887