Polynomial bases: Positivity and Schur multiplication
HTML articles powered by AMS MathViewer
- by Dominic Searles PDF
- Trans. Amer. Math. Soc. 373 (2020), 819-847 Request permission
Abstract:
We establish a poset structure on combinatorial bases of multivariate polynomials defined by positive expansions and study properties common to bases in this poset. Included are the well-studied bases of Schubert polynomials, Demazure characters, and Demazure atoms; the quasi-key, fundamental, and monomial slide bases introduced in 2017 by Assaf and the author; and a new basis we introduce completing this poset structure. We show the product of a Schur polynomial and that an element of a basis in this poset expands positively in that basis; in particular, we give the first Littlewood-Richardson rule for the product of a Schur polynomial and a quasi-key polynomial. This rule simultaneously extends Haglund, Luoto, Mason, and van Willigenburg’s (2011) Littlewood-Richardson rule for quasi-Schur polynomials and refines their Littlewood-Richardson rule for Demazure characters. We also establish bijections connecting combinatorial models for these polynomials including semi-skyline fillings and quasi-key tableaux.References
- Per Alexandersson, Non-symmetric Macdonald polynomials and Demazure-Lusztig operators, preprint, arXiv:1602.05153 (2016).
- Sami Assaf and Dominic Searles, Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams, Adv. Math. 306 (2017), 89–122. MR 3581299, DOI 10.1016/j.aim.2016.10.015
- Sami Assaf and Dominic Searles, Kohnert tableaux and a lifting of quasi-Schur functions, J. Combin. Theory Ser. A 156 (2018), 85–118. MR 3762104, DOI 10.1016/j.jcta.2018.01.001
- Sami Assaf, Combinatorial models for Schubert polynomials, preprint (2017), arXiv:1703.00088.
- Sami Assaf, Weak dual equivalence for polynomials, preprint, arXiv:1702.04051 (2017).
- Sami Assaf, Nonsymmetric Macdonald polynomials and a refinement of Kostka-Foulkes polynomials, Trans. Amer. Math. Soc. 370 (2018), no. 12, 8777–8796. MR 3864395, DOI 10.1090/tran/7374
- Sara C. Billey, William Jockusch, and Richard P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345–374. MR 1241505, DOI 10.1023/A:1022419800503
- Ivan Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 10 (1995), 483–515. MR 1358032, DOI 10.1155/S1073792895000341
- Michel Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172. MR 430001
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math. 130 (2008), no. 2, 359–383. MR 2405160, DOI 10.1353/ajm.2008.0015
- J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg, Quasisymmetric Schur functions, J. Combin. Theory Ser. A 118 (2011), no. 2, 463–490. MR 2739497, DOI 10.1016/j.jcta.2009.11.002
- J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg, Refinements of the Littlewood-Richardson rule, Trans. Amer. Math. Soc. 363 (2011), no. 3, 1665–1686. MR 2737282, DOI 10.1090/S0002-9947-2010-05244-4
- Bogdan Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), no. 2, 299–318. MR 1953294, DOI 10.1215/S0012-7094-03-11624-5
- Axel Kohnert, Weintrauben, Polynome, Tableaux, Bayreuth. Math. Schr. 38 (1991), 1–97 (German). Dissertation, Universität Bayreuth, Bayreuth, 1990. MR 1132534
- Allen Knutson and Alexander Yong, A formula for $K$-theory truncation Schubert calculus, Int. Math. Res. Not. 70 (2004), 3741–3756. MR 2101981, DOI 10.1155/S1073792804142244
- Thomas Lam and Pavlo Pylyavskyy, Combinatorial Hopf algebras and $K$-homology of Grassmannians, Int. Math. Res. Not. IMRN 24 (2007), Art. ID rnm125, 48. MR 2377012, DOI 10.1093/imrn/rnm125
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- Alain Lascoux and Marcel-Paul Schützenberger, Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 125–144. MR 1035493
- I. G. Macdonald, Notes on Schubert polynomials, LACIM, Univ. Quebec à Montréal, Montréal, PQ, 1991.
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
- S. Mason, A decomposition of Schur functions and an analogue of the Robinson-Schensted-Knuth algorithm, Sém. Lothar. Combin. 57 (2006/08), Art. B57e, 24. MR 2461993
- S. Mason, An explicit construction of type A Demazure atoms, J. Algebraic Combin. 29 (2009), no. 3, 295–313. MR 2496309, DOI 10.1007/s10801-008-0133-4
- Cara Monical, Set-Valued Skyline Fillings, preprint (2016), arXiv:1611.08777.
- Cara Monical, Oliver Pechenik, and Dominic Searles, Families of polynomials from combinatorial ${K}$-theory, preprint, arXiv:1806.03802 (2018).
- Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75–121. MR 1353018, DOI 10.1007/BF02392487
- Oliver Pechenik and Dominic Searles, Decompositions of Grothendieck polynomials, Int. Math. Res. Not. IMRN 10 (2019), 3214–3241. MR 3952563, DOI 10.1093/imrn/rnx207
- Anna Ying Pun, On decomposition of the product of Demazure atoms and Demazure characters, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–University of Pennsylvania. MR 3553609
- Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143. MR 1324004, DOI 10.1016/0097-3165(95)90083-7
- Vasu V. Tewari and Stephanie J. van Willigenburg, Modules of the 0-Hecke algebra and quasisymmetric Schur functions, Adv. Math. 285 (2015), 1025–1065. MR 3406520, DOI 10.1016/j.aim.2015.08.012
Additional Information
- Dominic Searles
- Affiliation: Department of Mathematics and Statistics, University of Otago, Dunedin 9016, New Zealand
- MR Author ID: 1039513
- Email: dominic.searles@otago.ac.nz
- Received by editor(s): August 21, 2017
- Received by editor(s) in revised form: July 30, 2018
- Published electronically: October 28, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 819-847
- MSC (2010): Primary 05E05; Secondary 05E10
- DOI: https://doi.org/10.1090/tran/7670
- MathSciNet review: 4068251