## Blowup algebras of rational normal scrolls

HTML articles powered by AMS MathViewer

- by Alessio Sammartano PDF
- Trans. Amer. Math. Soc.
**373**(2020), 797-818 Request permission

## Abstract:

We determine the equations of the blowup of $\mathbb {P}^{n}$ along a $d$-fold rational normal scroll $\mathcal {S}$, and we prove that the Rees ring and special fiber ring of $\mathcal {S}\subseteq \mathbb {P}^{n}$ are Koszul algebras.## References

- Grigoriy Blekherman, Gregory G. Smith, and Mauricio Velasco,
*Sums of squares and varieties of minimal degree*, J. Amer. Math. Soc.**29**(2016), no. 3, 893–913. MR**3486176**, DOI 10.1090/jams/847 - Stefan Blum,
*Subalgebras of bigraded Koszul algebras*, J. Algebra**242**(2001), no. 2, 795–809. MR**1848973**, DOI 10.1006/jabr.2001.8804 - Winfried Bruns, Aldo Conca, and Matteo Varbaro,
*Relations between the minors of a generic matrix*, Adv. Math.**244**(2013), 171–206. MR**3077870**, DOI 10.1016/j.aim.2013.05.004 - Winfried Bruns, Aldo Conca, and Matteo Varbaro,
*Maximal minors and linear powers*, J. Reine Angew. Math.**702**(2015), 41–53. MR**3341465**, DOI 10.1515/crelle-2013-0026 - Winfried Bruns and Udo Vetter,
*Determinantal rings*, Lecture Notes in Mathematics, vol. 1327, Springer-Verlag, Berlin, 1988. MR**953963**, DOI 10.1007/BFb0080378 - Laurent Busé,
*On the equations of the moving curve ideal of a rational algebraic plane curve*, J. Algebra**321**(2009), no. 8, 2317–2344. MR**2501523**, DOI 10.1016/j.jalgebra.2009.01.030 - Michael L. Catalano-Johnson,
*The possible dimensions of the higher secant varieties*, Amer. J. Math.**118**(1996), no. 2, 355–361. MR**1385282**, DOI 10.1353/ajm.1996.0012 - Marc Chardin,
*Powers of ideals and the cohomology of stalks and fibers of morphisms*, Algebra Number Theory**7**(2013), no. 1, 1–18. MR**3037888**, DOI 10.2140/ant.2013.7.1 - A. Conca,
*Koszul algebras and Gröbner bases of quadrics*, Proceedings of the 29th Symposium on Commutative Algebra in Nagoya, Japan (2007), pp. 127–133. - Aldo Conca, Jürgen Herzog, and Giuseppe Valla,
*Sagbi bases with applications to blow-up algebras*, J. Reine Angew. Math.**474**(1996), 113–138. MR**1390693**, DOI 10.1515/crll.1996.474.113 - David A. Cox,
*The moving curve ideal and the Rees algebra*, Theoret. Comput. Sci.**392**(2008), no. 1-3, 23–36. MR**2394983**, DOI 10.1016/j.tcs.2007.10.012 - S. Dale Cutkosky, Jürgen Herzog, and Ngô Viêt Trung,
*Asymptotic behaviour of the Castelnuovo-Mumford regularity*, Compositio Math.**118**(1999), no. 3, 243–261. MR**1711319**, DOI 10.1023/A:1001559912258 - A. V. Doria, S. H. Hassanzadeh, and A. Simis,
*A characteristic-free criterion of birationality*, Adv. Math.**230**(2012), no. 1, 390–413. MR**2900548**, DOI 10.1016/j.aim.2011.12.005 - David Eisenbud and Joe Harris,
*On varieties of minimal degree (a centennial account)*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 3–13. MR**927946**, DOI 10.1090/pspum/046.1/927946 - D. R. Grayson and M. E. Stillman,
*Macaulay2, a software system for research in algebraic geometry*, available at www.math.uiuc.edu/Macaulay2/. - Olga Holtz and Bernd Sturmfels,
*Hyperdeterminantal relations among symmetric principal minors*, J. Algebra**316**(2007), no. 2, 634–648. MR**2358606**, DOI 10.1016/j.jalgebra.2007.01.039 - Andrew R. Kustin, Claudia Polini, and Bernd Ulrich,
*Rational normal scrolls and the defining equations of Rees algebras*, J. Reine Angew. Math.**650**(2011), 23–65. MR**2770555**, DOI 10.1515/CRELLE.2011.002 - Andrew R. Kustin, Claudia Polini, and Bernd Ulrich,
*Blowups and fibers of morphisms*, Nagoya Math. J.**224**(2016), no. 1, 168–201. MR**3572752**, DOI 10.1017/nmj.2016.34 - Andrew R. Kustin, Claudia Polini, and Bernd Ulrich,
*The equations defining blowup algebras of height three Gorenstein ideals*, Algebra Number Theory**11**(2017), no. 7, 1489–1525. MR**3697146**, DOI 10.2140/ant.2017.11.1489 - Susan Morey and Bernd Ulrich,
*Rees algebras of ideals with low codimension*, Proc. Amer. Math. Soc.**124**(1996), no. 12, 3653–3661. MR**1343713**, DOI 10.1090/S0002-9939-96-03470-3 - Ezra Miller and Bernd Sturmfels,
*Combinatorial commutative algebra*, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR**2110098** - Luke Oeding,
*Set-theoretic defining equations of the variety of principal minors of symmetric matrices*, Algebra Number Theory**5**(2011), no. 1, 75–109. MR**2833786**, DOI 10.2140/ant.2011.5.75 - T. Kyle Petersen, Pavlo Pylyavskyy, and David E. Speyer,
*A non-crossing standard monomial theory*, J. Algebra**324**(2010), no. 5, 951–969. MR**2659207**, DOI 10.1016/j.jalgebra.2010.05.001 - Shlomi Reuveni,
*Catalan’s trapezoids*, Probab. Engrg. Inform. Sci.**28**(2014), no. 3, 353–361. MR**3214794**, DOI 10.1017/S0269964814000047 - Tim Römer,
*Homological properties of bigraded algebras*, Illinois J. Math.**45**(2001), no. 4, 1361–1376. MR**1895463** - Francesco Russo,
*On the geometry of some special projective varieties*, Lecture Notes of the Unione Matematica Italiana, vol. 18, Springer, Cham; Unione Matematica Italiana, Bologna, 2016. MR**3445582**, DOI 10.1007/978-3-319-26765-4 - Francesco Russo and Aron Simis,
*On birational maps and Jacobian matrices*, Compositio Math.**126**(2001), no. 3, 335–358. MR**1834742**, DOI 10.1023/A:1017572213947 - Francisco Santos, Christian Stump, and Volkmar Welker,
*Noncrossing sets and a Grassmann associahedron*, Forum Math. Sigma**5**(2017), Paper No. e5, 49. MR**3610869**, DOI 10.1017/fms.2017.1 - Aron Simis,
*Cremona transformations and some related algebras*, J. Algebra**280**(2004), no. 1, 162–179. MR**2081926**, DOI 10.1016/j.jalgebra.2004.03.025 - Bernd Sturmfels,
*Gröbner bases and convex polytopes*, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR**1363949**, DOI 10.1090/ulect/008 - Bernd Sturmfels and Neil White,
*Gröbner bases and invariant theory*, Adv. Math.**76**(1989), no. 2, 245–259. MR**1013672**, DOI 10.1016/0001-8708(89)90053-4

## Additional Information

**Alessio Sammartano**- Affiliation: Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, Indiana 46556
- MR Author ID: 942872
- ORCID: 0000-0002-0377-1375
- Email: asammart@nd.edu
- Received by editor(s): September 29, 2017
- Received by editor(s) in revised form: February 11, 2018, and July 17, 2018
- Published electronically: November 5, 2019
- Additional Notes: This work was supported by a fellowship of the Purdue Research Foundation while the author was visiting the University of Genoa in 2016 and by grant No. 1440140 of the National Science Foundation while he was a Postdoctoral Fellow at the Mathematical Sciences Research Institute in Berkeley in 2018.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 797-818 - MSC (2010): Primary 13A30, 13C40; Secondary 05E45, 13D02, 13P10, 14M12, 14J40
- DOI: https://doi.org/10.1090/tran/7689
- MathSciNet review: 4068250