A local to global argument on low dimensional manifolds
HTML articles powered by AMS MathViewer
- by Sam Nariman PDF
- Trans. Amer. Math. Soc. 373 (2020), 1307-1342 Request permission
Abstract:
For an oriented manifold $M$ whose dimension is less than $4$, we use the contractibility of certain complexes associated to its submanifolds to cut $M$ into simpler pieces in order to do local to global arguments. In particular, in these dimensions, we give a different proof of a deep theorem of Thurston in foliation theory that says the natural map between classifying spaces $\mathrm {B}\operatorname {Homeo}^{\delta }(M)\to \mathrm {B} \operatorname {Homeo}(M)$ induces a homology isomorphism where $\operatorname {Homeo}^{\delta }(M)$ denotes the group of homeomorphisms of $M$ made discrete. Our proof shows that in low dimensions, Thurston’s theorem can be proved without using foliation theory. Finally, we show that this technique gives a new perspective on the homotopy type of homeomorphism groups in low dimensions. In particular, we give a different proof of Hacher’s theorem that the homeomorphism groups of Haken $3$-manifolds with boundary are homotopically discrete without using his disjunction techniques.References
- M. A. Armstrong, Collars and concordances of topological manifolds, Comment. Math. Helv. 45 (1970), 119–128. MR 266221, DOI 10.1007/BF02567319
- Augustin Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications, vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1445290, DOI 10.1007/978-1-4757-6800-8
- Dan Burghelea and Richard Lashof, The homotopy type of the space of diffeomorphisms. I, II, Trans. Amer. Math. Soc. 196 (1974), 1–36; ibid. 196 (1974), 37–50. MR 356103, DOI 10.1090/S0002-9947-1974-0356103-2
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331–341. MR 133812, DOI 10.2307/1970177
- Jean Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380 (French). MR 140120, DOI 10.24033/bsmf.1567
- A. V. Černavskiĭ, Local contractibility of the group of homeomorphisms of a manifold. , Mat. Sb. (N.S.) 79 (121) (1969), 307–356 (Russian). MR 0259925
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Johannes Ebert and Oscar Randal-Williams, Semisimplicial spaces, Algebr. Geom. Topol. 19 (2019), no. 4, 2099–2150. MR 3995026, DOI 10.2140/agt.2019.19.2099
- C. J. Earle and A. Schatz, Teichmüller theory for surfaces with boundary, J. Differential Geometry 4 (1970), 169–185. MR 277000, DOI 10.4310/jdg/1214429381
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- David Gabai, On the geometric and topological rigidity of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 10 (1997), no. 1, 37–74. MR 1354958, DOI 10.1090/S0894-0347-97-00206-3
- David Gabai, The Smale conjecture for hyperbolic 3-manifolds: $\textrm {Isom}(M^3)\simeq \textrm {Diff}(M^3)$, J. Differential Geom. 58 (2001), no. 1, 113–149. MR 1895350
- Søren Galatius and Oscar Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds. I, J. Amer. Math. Soc. 31 (2018), no. 1, 215–264. MR 3718454, DOI 10.1090/jams/884
- André Haefliger, Homotopy and integrability, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133–163. MR 0285027
- Wolfgang Haken, Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I, Math. Z. 80 (1962), 89–120 (German). MR 160196, DOI 10.1007/BF01162369
- Mary-Elizabeth Hamstrom, Homotopy in homeomorphism spaces, $\textrm {TOP}$ and $\textrm {PL}$, Bull. Amer. Math. Soc. 80 (1974), 207–230. MR 334262, DOI 10.1090/S0002-9904-1974-13433-6
- Allen Hatcher. Notes on basic 3-manifold topology, https://www.math.cornell.edu/~hatcher/3M/3M.pdf.
- Allen Hatcher, Homeomorphisms of sufficiently large $P^{2}$-irreducible $3$-manifolds, Topology 15 (1976), no. 4, 343–347. MR 420620, DOI 10.1016/0040-9383(76)90027-6
- A. Hatcher, On the diffeomorphism group of $S^{1}\times S^{2}$, Proc. Amer. Math. Soc. 83 (1981), no. 2, 427–430. MR 624946, DOI 10.1090/S0002-9939-1981-0624946-2
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- Allen Hatcher, Spaces of incompressible surfaces, arXiv preprint math/9906074, 1999.
- Solomon Jekel, Powers of the Euler class, Adv. Math. 229 (2012), no. 3, 1949–1975. MR 2871163, DOI 10.1016/j.aim.2011.12.004
- Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575–582. MR 242165, DOI 10.2307/1970652
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- Alexander Kupers, Proving homological stability for homeomorphisms of manifolds, preprint arXiv:1510.02456, 2015.
- R. Lashof, Embedding spaces, Illinois J. Math. 20 (1976), no. 1, 144–154. MR 388403, DOI 10.1215/ijm/1256050168
- François Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Astérisque, No. 12, Société Mathématique de France, Paris, 1974 (French). With an English summary and table of contents. MR 0356056
- John N. Mather, The vanishing of the homology of certain groups of homeomorphisms, Topology 10 (1971), 297–298. MR 288777, DOI 10.1016/0040-9383(71)90022-X
- John N. Mather, Integrability in codimension $1$, Comment. Math. Helv. 48 (1973), 195–233. MR 356085, DOI 10.1007/BF02566122
- G. S. McCarty Jr., Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), 293–304. MR 145531, DOI 10.1090/S0002-9947-1963-0145531-9
- Dusa McDuff, The homology of some groups of diffeomorphisms, Comment. Math. Helv. 55 (1980), no. 1, 97–129. MR 569248, DOI 10.1007/BF02566677
- John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357–362. MR 84138, DOI 10.2307/1969967
- Sam Nariman, Homological stability and stable moduli of flat manifold bundles, Adv. Math. 320 (2017), 1227–1268. MR 3709135, DOI 10.1016/j.aim.2017.09.015
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math/0211159, 2002.
- Grisha Perelman, Ricci flow with surgery on three-manifolds, arXiv preprint math/0303109, 2003.
- L. Paris and D. Rolfsen, Geometric subgroups of surface braid groups, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 417–472 (English, with English and French summaries). MR 1697370, DOI 10.5802/aif.1680
- Luis Paris and Dale Rolfsen, Geometric subgroups of mapping class groups, J. Reine Angew. Math. 521 (2000), 47–83. MR 1752295, DOI 10.1515/crll.2000.030
- Frank Quinn, Topological transversality holds in all dimensions, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 145–148. MR 929089, DOI 10.1090/S0273-0979-1988-15629-7
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Oscar Randal-Williams, Resolutions of moduli spaces and homological stability, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 1, 1–81. MR 3438379, DOI 10.4171/JEMS/583
- Graeme Segal, Classifying spaces related to foliations, Topology 17 (1978), no. 4, 367–382. MR 516216, DOI 10.1016/0040-9383(78)90004-6
- Stephen Smale, Diffeomorphisms of the $2$-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626. MR 112149, DOI 10.1090/S0002-9939-1959-0112149-8
- William Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304–307. MR 339267, DOI 10.1090/S0002-9904-1974-13475-0
- William Thurston, The theory of foliations of codimension greater than one, Comment. Math. Helv. 49 (1974), 214–231. MR 370619, DOI 10.1007/BF02566730
- W. P. Thurston, Existence of codimension-one foliations, Ann. of Math. (2) 104 (1976), no. 2, 249–268. MR 425985, DOI 10.2307/1971047
- Michael Weiss, What does the classifying space of a category classify?, Homology Homotopy Appl. 7 (2005), no. 1, 185–195. MR 2175298, DOI 10.4310/HHA.2005.v7.n1.a10
Additional Information
- Sam Nariman
- Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208; and University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- MR Author ID: 1228088
- Email: sam@math.northwestern.edu, sam@math.ku.dk
- Received by editor(s): April 23, 2019
- Received by editor(s) in revised form: July 16, 2019
- Published electronically: November 1, 2019
- Additional Notes: The author was partially supported by NSF DMS-1810644.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 1307-1342
- MSC (2010): Primary 57R32, 57R40, 57R50, 57R52, 57R65
- DOI: https://doi.org/10.1090/tran/7970
- MathSciNet review: 4068265