## The orthonormal Strichartz inequality on torus

HTML articles powered by AMS MathViewer

- by Shohei Nakamura PDF
- Trans. Amer. Math. Soc.
**373**(2020), 1455-1476 Request permission

## Abstract:

In this paper, motivated by recent works due to Frank-Lewin-Lieb-Seiringer and Frank-Sabin, we study the Strichartz inequality on torus with the orthonormal system input and obtain sharp estimates in a certain sense. In particular, we will reveal the tradeoff relation between Sobolev regularity and Schatten exponent gain where the $1/p$ derivative-loss Strichartz inequality plays an important role as in the context on compact manifold due to Burq-Gérard-Tzvetkov. An application of the inequality shows the local well-posedness to the periodic Hartree equation describing the infinitely many quantum particles interacting with the power type potential.## References

- Jonathan Bennett, Neal Bez, Susana Gutiérrez, and Sanghyuk Lee,
*On the Strichartz estimates for the kinetic transport equation*, Comm. Partial Differential Equations**39**(2014), no. 10, 1821–1826. MR**3250975**, DOI 10.1080/03605302.2013.850880 - Árpád Bényi and Tadahiro Oh,
*The Sobolev inequality on the torus revisited*, Publ. Math. Debrecen**83**(2013), no. 3, 359–374. MR**3119672**, DOI 10.5486/PMD.2013.5529 - Neal Bez, Younghun Hong, Sanghyuk Lee, Shohei Nakamura, and Yoshihiro Sawano,
*On the Strichartz estimates for orthonormal systems of initial data with regularity*, Adv. Math.**354**(2019), 106736, 37. MR**3985036**, DOI 10.1016/j.aim.2019.106736 - J. Bourgain,
*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations*, Geom. Funct. Anal.**3**(1993), no. 2, 107–156. MR**1209299**, DOI 10.1007/BF01896020 - Jean Bourgain and Ciprian Demeter,
*Improved estimates for the discrete Fourier restriction to the higher dimensional sphere*, Illinois J. Math.**57**(2013), no. 1, 213–227. MR**3224568** - Jean Bourgain and Ciprian Demeter,
*New bounds for the discrete Fourier restriction to the sphere in 4D and 5D*, Int. Math. Res. Not. IMRN**11**(2015), 3150–3184. MR**3373047**, DOI 10.1093/imrn/rnu036 - Jean Bourgain and Ciprian Demeter,
*The proof of the $l^2$ decoupling conjecture*, Ann. of Math. (2)**182**(2015), no. 1, 351–389. MR**3374964**, DOI 10.4007/annals.2015.182.1.9 - N. Burq, P. Gérard, and N. Tzvetkov,
*Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds*, Amer. J. Math.**126**(2004), no. 3, 569–605. MR**2058384**, DOI 10.1353/ajm.2004.0016 - N. Burq, P. Gérard, and N. Tzvetkov,
*Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces*, Invent. Math.**159**(2005), no. 1, 187–223 (English, with English and French summaries). MR**2142336**, DOI 10.1007/s00222-004-0388-x - Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov,
*Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations*, Ann. Sci. École Norm. Sup. (4)**38**(2005), no. 2, 255–301 (English, with English and French summaries). MR**2144988**, DOI 10.1016/j.ansens.2004.11.003 - F. Catoire and W.-M. Wang,
*Bounds on Sobolev norms for the defocusing nonlinear Schrödinger equation on general flat tori*, Commun. Pure Appl. Anal.**9**(2010), no. 2, 483–491. MR**2600446**, DOI 10.3934/cpaa.2010.9.483 - Thomas Chen, Younghun Hong, and Nataša Pavlović,
*Global well-posedness of the NLS system for infinitely many fermions*, Arch. Ration. Mech. Anal.**224**(2017), no. 1, 91–123. MR**3609246**, DOI 10.1007/s00205-016-1068-x - Thomas Chen, Younghun Hong, and Nataša Pavlović,
*On the scattering problem for infinitely many fermions in dimensions $d\ge 3$ at positive temperature*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**35**(2018), no. 2, 393–416. MR**3765547**, DOI 10.1016/j.anihpc.2017.05.002 - Seckin Demirbas,
*Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms*, Commun. Pure Appl. Anal.**16**(2017), no. 5, 1517–1530. MR**3661788**, DOI 10.3934/cpaa.2017072 - Rupert L. Frank, Mathieu Lewin, Elliott H. Lieb, and Robert Seiringer,
*Strichartz inequality for orthonormal functions*, J. Eur. Math. Soc. (JEMS)**16**(2014), no. 7, 1507–1526. MR**3254332**, DOI 10.4171/JEMS/467 - Rupert L. Frank and Julien Sabin,
*Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates*, Amer. J. Math.**139**(2017), no. 6, 1649–1691. MR**3730931**, DOI 10.1353/ajm.2017.0041 - Rupert L. Frank and Julien Sabin,
*The Stein-Tomas inequality in trace ideals*, Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2015–2016, Ed. Éc. Polytech., Palaiseau, 2017, pp. Exp. No. XV, 12. MR**3616317** - Patrick Gérard and Vittoria Pierfelice,
*Nonlinear Schrödinger equation on four-dimensional compact manifolds*, Bull. Soc. Math. France**138**(2010), no. 1, 119–151 (English, with English and French summaries). MR**2638892**, DOI 10.24033/bsmf.2586 - J. Ginibre and G. Velo,
*Smoothing properties and retarded estimates for some dispersive evolution equations*, Comm. Math. Phys.**144**(1992), no. 1, 163–188. MR**1151250**, DOI 10.1007/BF02099195 - Zihua Guo, Tadahiro Oh, and Yuzhao Wang,
*Strichartz estimates for Schrödinger equations on irrational tori*, Proc. Lond. Math. Soc. (3)**109**(2014), no. 4, 975–1013. MR**3273490**, DOI 10.1112/plms/pdu025 - Zihua Guo and Lizhong Peng,
*Endpoint Strichartz estimate for the kinetic transport equation in one dimension*, C. R. Math. Acad. Sci. Paris**345**(2007), no. 5, 253–256 (English, with English and French summaries). MR**2353675**, DOI 10.1016/j.crma.2007.07.002 - Markus Keel and Terence Tao,
*Endpoint Strichartz estimates*, Amer. J. Math.**120**(1998), no. 5, 955–980. MR**1646048**, DOI 10.1353/ajm.1998.0039 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*Oscillatory integrals and regularity of dispersive equations*, Indiana Univ. Math. J.**40**(1991), no. 1, 33–69. MR**1101221**, DOI 10.1512/iumj.1991.40.40003 - Mathieu Lewin and Julien Sabin,
*The Hartree equation for infinitely many particles I. Well-posedness theory*, Comm. Math. Phys.**334**(2015), no. 1, 117–170. MR**3304272**, DOI 10.1007/s00220-014-2098-6 - Mathieu Lewin and Julien Sabin,
*The Hartree equation for infinitely many particles, II: Dispersion and scattering in 2D*, Anal. PDE**7**(2014), no. 6, 1339–1363. MR**3270166**, DOI 10.2140/apde.2014.7.1339 - Elliott H. Lieb,
*The stability of matter: from atoms to stars*, Bull. Amer. Math. Soc. (N.S.)**22**(1990), no. 1, 1–49. MR**1014510**, DOI 10.1090/S0273-0979-1990-15831-8 - E. H. Lieb, W. Thirring,
*Bound on kinetic energy of fermions which proves stability of matter*, Phys. Rev. Lett.**35**(1975), 687–689. - Andrea R. Nahmod,
*The nonlinear Schrödinger equation on tori: integrating harmonic analysis, geometry, and probability*, Bull. Amer. Math. Soc. (N.S.)**53**(2016), no. 1, 57–91. MR**3403081**, DOI 10.1090/bull/1516 - J. Sabin,
*The Hartree equation for infinite quantum systems*, Journées équations aux dérivées partielles, (2014), Exp. No. 8, 18 pp. - Julien Sabin,
*Littlewood-Paley decomposition of operator densities and application to a new proof of the Lieb-Thirring inequality*, Math. Phys. Anal. Geom.**19**(2016), no. 2, Art. 11, 11. MR**3508209**, DOI 10.1007/s11040-016-9215-z - Robert S. Strichartz,
*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**512086** - G. Staffilani,
*Dispersive equations and their role beyond PDE*, http://math.mit.edu /~gigliola/AMS-Bulletin.pdf. - Hans Triebel,
*Theory of function spaces. II*, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992. MR**1163193**, DOI 10.1007/978-3-0346-0419-2 - Yoshio Tsutsumi,
*$L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups*, Funkcial. Ekvac.**30**(1987), no. 1, 115–125. MR**915266** - Luis Vega,
*Restriction theorems and the Schrödinger multiplier on the torus*, Partial differential equations with minimal smoothness and applications (Chicago, IL, 1990) IMA Vol. Math. Appl., vol. 42, Springer, New York, 1992, pp. 199–211. MR**1155865**, DOI 10.1007/978-1-4612-2898-1_{1}8 - Kenji Yajima,
*Existence of solutions for Schrödinger evolution equations*, Comm. Math. Phys.**110**(1987), no. 3, 415–426. MR**891945**, DOI 10.1007/BF01212420 - Frank Zimmermann,
*On vector-valued Fourier multiplier theorems*, Studia Math.**93**(1989), no. 3, 201–222. MR**1030488**, DOI 10.4064/sm-93-3-201-222

## Additional Information

**Shohei Nakamura**- Affiliation: Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
- MR Author ID: 1145908
- Email: nakamura-shouhei@ed.tmu.ac.jp
- Received by editor(s): November 5, 2018
- Received by editor(s) in revised form: January 8, 2019, and August 15, 2019
- Published electronically: November 1, 2019
- Additional Notes: This work was supported by Grant-in-Aid for JSPS Research Fellow No. 17J01766.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 1455-1476 - MSC (2010): Primary 35B45; Secondary 35P10, 35B65
- DOI: https://doi.org/10.1090/tran/7982
- MathSciNet review: 4068269