Quasi-regular representations of discrete groups and associated $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Bachir Bekka and Mehrdad Kalantar PDF
- Trans. Amer. Math. Soc. 373 (2020), 2105-2133 Request permission
Abstract:
Let $G$ be a countable group. We introduce several equivalence relations on the set $\operatorname {Sub}(G)$ of subgroups of $G$, defined by properties of the quasi-regular representation $\lambda _{G/H}$ associated with $H\in \operatorname {Sub}(G)$, and we compare them to the relation of $G$-conjugacy of subgroups. We define a class $\operatorname {Sub}_{\mathrm {sg}}(G)$ of subgroups (these are subgroups with a certain spectral gap property) and show that they are rigid, in the sense that the equivalence class of $H\in \operatorname {Sub}_{\mathrm {sg}}(G)$ for any one of the above equivalence relations coincides with the $G$-conjugacy class of $H$. Next, we introduce a second class $\operatorname {Sub}_{\text {w-par}}(G)$ of subgroups (these are subgroups which are weakly parabolic in some sense), and we establish results concerning the ideal structure of the $C^*$-algebra $C^*_{\lambda _{G/H}}(G)$ generated by $\lambda _{G/H}$ for subgroups $H$ which belong to either one of the classes $\operatorname {Sub}_{\text {w-par}}(G)$ and $\operatorname {Sub}_{\mathrm {sg}} (G)$. Our results are valid, more generally, for induced representations $\operatorname {Ind}_H^G \sigma$, where $\sigma$ is a representation of $H\in \operatorname {Sub}(G)$.References
- Laurent Bartholdi and Rostislav I. Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J. 28 (2002), no. 1, 47–90. MR 1899368
- Bachir Bekka, Infinite characters on $GL_n(\mathbf Q)$, on $\textrm {SL}_n(\mathbf Z)$, and on groups acting on trees, J. Funct. Anal. 277 (2019), no. 7, 2160–2178. MR 3989142, DOI 10.1016/j.jfa.2018.10.003
- Bachir Bekka, Spectral rigidity of group actions on homogeneous spaces, Handbook of group actions. Vol. IV, Adv. Lect. Math. (ALM), vol. 41, Int. Press, Somerville, MA, 2018, pp. 563–622. MR 3888695
- M. Bekka, M. Cowling, and P. de la Harpe, Simplicity of the reduced $C^*$-algebra of $\textrm {PSL}(n,\textbf {Z})$, Internat. Math. Res. Notices 7 (1994), 285ff., approx. 7 pp.}, issn=1073-7928, review= MR 1283024, doi=10.1155/S1073792894000322, DOI 10.1155/S1073792894000322
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- Pierre Bérard, Transplantation et isospectralité. I, Math. Ann. 292 (1992), no. 3, 547–559 (French). MR 1152950, DOI 10.1007/BF01444635
- Chandrasheel Bhagwat, Supriya Pisolkar, and C. S. Rajan, Commensurability and representation equivalent arithmetic lattices, Int. Math. Res. Not. IMRN 8 (2014), 2017–2036. MR 3194011, DOI 10.1093/imrn/rns282
- Brian H. Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), no. 3, 643–667. MR 1602069, DOI 10.1090/S0894-0347-98-00264-1
- B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250016, 66. MR 2922380, DOI 10.1142/S0218196712500166
- Emmanuel Breuillard, Mehrdad Kalantar, Matthew Kennedy, and Narutaka Ozawa, $C^*$-simplicity and the unique trace property for discrete groups, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 35–71. MR 3735864, DOI 10.1007/s10240-017-0091-2
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2) 42 (1996), no. 3-4, 215–256. MR 1426438
- Pierre-Emmanuel Caprace and Nicolas Monod, Relative amenability, Groups Geom. Dyn. 8 (2014), no. 3, 747–774. MR 3267522, DOI 10.4171/GGD/246
- Claude Chabauty, Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950), 143–151 (French). MR 38983
- Lawrence Corwin, Induced representations of discrete groups, Proc. Amer. Math. Soc. 47 (1975), 279–287. MR 387487, DOI 10.1090/S0002-9939-1975-0387487-3
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Edward G. Effros, A decomposition theory for representations of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 107 (1963), 83–106. MR 146682, DOI 10.1090/S0002-9947-1963-0146682-5
- J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424–447. MR 159898, DOI 10.1090/S0002-9947-1964-0159898-X
- Z. Frolík, Maps of extremally disconnected spaces, theory of types, and applications, General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968) Academia, Prague, 1971, pp. 131–142. MR 0295305
- Harry Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 193–229. MR 0352328
- Eli Glasner and Benjamin Weiss, Uniformly recurrent subgroups, Recent trends in ergodic theory and dynamical systems, Contemp. Math., vol. 631, Amer. Math. Soc., Providence, RI, 2015, pp. 63–75. MR 3330338, DOI 10.1090/conm/631/12596
- J. Glimm, Type I $C^{\ast }$-algebras, Ann. of Math. (2) 73 (1961), 572–612.
- Carolyn Gordon, Sunada’s isospectrality technique: two decades later, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 45–58. MR 1500137, DOI 10.1090/conm/484/09464
- Uffe Haagerup, A new look at $C^*$-simplicity and the unique trace property of a group, Operator algebras and applications—the Abel Symposium 2015, Abel Symp., vol. 12, Springer, [Cham], 2017, pp. 167–176. MR 3837596
- B. Hartley and A. E. Zalesskiĭ, On simple periodic linear groups—dense subgroups, permutation representations, and induced modules, Israel J. Math. 82 (1993), no. 1-3, 299–327. MR 1239052, DOI 10.1007/BF02808115
- Mehrdad Kalantar and Matthew Kennedy, Boundaries of reduced $C^*$-algebras of discrete groups, J. Reine Angew. Math. 727 (2017), 247–267. MR 3652252, DOI 10.1515/crelle-2014-0111
- I. Kapovich and N. Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001) Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39–93.
- M. Kennedy, An intrinsic characterization of $C^*$-simplicity, arXiv:1509.01870 (2015). Ann. Sci. Éc. Norm. Supér. (4) (to appear).
- Adam Kleppner, On the intertwining number theorem, Proc. Amer. Math. Soc. 12 (1961), 731–733. MR 131783, DOI 10.1090/S0002-9939-1961-0131783-1
- Adrien Le Boudec, $C^*$-simplicity and the amenable radical, Invent. Math. 209 (2017), no. 1, 159–174. MR 3660307, DOI 10.1007/s00222-016-0706-0
- Adrien Le Boudec and Nicolás Matte Bon, Subgroup dynamics and $C^*$-simplicity of groups of homeomorphisms, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, 557–602 (English, with English and French summaries). MR 3831032, DOI 10.24033/asens.2361
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024, DOI 10.1007/978-3-642-61896-3
- George W. Mackey, On induced representations of groups, Amer. J. Math. 73 (1951), 576–592. MR 42420, DOI 10.2307/2372309
- William L. Paschke and Norberto Salinas, $C^{\ast }$-algebras associated with free products of groups, Pacific J. Math. 82 (1979), no. 1, 211–221. MR 549845
- Sorin Popa and Stefaan Vaes, Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, Adv. Math. 217 (2008), no. 2, 833–872. MR 2370283, DOI 10.1016/j.aim.2007.09.006
- Toshikazu Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), no. 1, 169–186. MR 782558, DOI 10.2307/1971195
- Elmar Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190–196 (German). MR 248288, DOI 10.1007/BF01404824
- Dana P. Williams, Crossed products of $C{^\ast }$-algebras, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007. MR 2288954, DOI 10.1090/surv/134
- Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41–89. MR 2039323, DOI 10.1515/crll.2004.007
Additional Information
- Bachir Bekka
- Affiliation: Université de Rennes, CNRS, IRMAR–UMR 6625, Campus Beaulieu, F-35042 Rennes Cedex, France
- MR Author ID: 33840
- Email: bachir.bekka@univ-rennes1.fr
- Mehrdad Kalantar
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas
- MR Author ID: 860647
- Email: kalantar@math.uh.edu
- Received by editor(s): April 5, 2019
- Received by editor(s) in revised form: June 19, 2019, and July 30, 2019
- Published electronically: November 5, 2019
- Additional Notes: The first author was supported by the Agence Nationale de la Recherche (ANR-11-LABX-0020-01, ANR-14-CE25-0004)
The second author was supported by NSF Grant DMS-1700259. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2105-2133
- MSC (2010): Primary 22D10, 22D25; Secondary 43A07, 46L05
- DOI: https://doi.org/10.1090/tran/7969
- MathSciNet review: 4068291