Equilibrium measures of meromorphic self-maps on non-Kähler manifolds
HTML articles powered by AMS MathViewer
- by Duc-Viet Vu PDF
- Trans. Amer. Math. Soc. 373 (2020), 2229-2250 Request permission
Abstract:
Let $X$ be a compact complex non-Kähler manifold and let $f$ be a dominant meromorphic self-map of $X$. Examples of such maps are self-maps of Hopf manifolds, Calabi-Eckmann manifolds, non-tori nilmanifolds, and their blowups. We prove that if $f$ has a dominant topological degree, then $f$ possesses an equilibrium measure $\mu$ satisfying well-known properties as in the Kähler case. The key ingredients are the notion of weakly d.s.h. functions substituting d.s.h. functions in the Kähler case and the use of suitable test functions in Sobolev spaces. A large enough class of holomorphic self-maps with a dominant topological degree on Hopf manifolds is also given.References
- Chal Benson and Carolyn S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513–518. MR 976592, DOI 10.1016/0040-9383(88)90029-8
- Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI 10.1090/S0002-9939-07-08858-2
- Jean-Yves Briend and Julien Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de $\textrm {P}^k(\mathbf C)$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 145–159 (French, with English and French summaries). MR 1863737, DOI 10.1007/s10240-001-8190-4
- L. A. Bunimovich, S. G. Dani, R. L. Dobrushin, M. V. Jakobson, I. P. Kornfeld, N. B. Maslova, Ya. B. Pesin, Ya. G. Sinai, J. Smillie, Yu. M. Sukhov, and A. M. Vershik, Dynamical systems, ergodic theory and applications, Second, expanded and revised edition, Encyclopaedia of Mathematical Sciences, vol. 100, Springer-Verlag, Berlin, 2000. Edited and with a preface by Sinai; Translated from the Russian; Mathematical Physics, I. MR 1758456
- Henry De Thélin and Gabriel Vigny, Entropy of meromorphic maps and dynamics of birational maps, Mém. Soc. Math. Fr. (N.S.) 122 (2010), vi+98 (English, with English and French summaries). MR 2752759, DOI 10.24033/msmf.434
- J.-P. Demailly, Complex analytic and differential geometry, http://www.fourier.ujf-grenoble.fr/~demailly.
- T.-C. Dinh, L. Kaufmann, and H. Wu, Dynamics of holomorphic correspondences on Riemann surfaces, arXiv:1808.10130, 2018.
- Tien-Cuong Dinh and Viêt-Anh Nguyên, Characterization of Monge-Ampère measures with Hölder continuous potentials, J. Funct. Anal. 266 (2014), no. 1, 67–84. MR 3121721, DOI 10.1016/j.jfa.2013.08.026
- Tien-Cuong Dinh and Nessim Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), no. 4, 367–423 (French, with English and French summaries). MR 1992375, DOI 10.1016/S0021-7824(03)00026-6
- Tien-Cuong Dinh and Nessim Sibony, Regularization of currents and entropy, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 959–971 (English, with English and French summaries). MR 2119243, DOI 10.1016/j.ansens.2004.09.002
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Tien-Cuong Dinh and Nessim Sibony, Decay of correlations and the central limit theorem for meromorphic maps, Comm. Pure Appl. Math. 59 (2006), no. 5, 754–768. MR 2172806, DOI 10.1002/cpa.20119
- Tien-Cuong Dinh and Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), no. 1, 221–258 (French, with English summary). MR 2208805, DOI 10.4171/CMH/50
- Tien-Cuong Dinh and Nessim Sibony, Pull-back of currents by holomorphic maps, Manuscripta Math. 123 (2007), no. 3, 357–371. MR 2314090, DOI 10.1007/s00229-007-0103-5
- Tien-Cuong Dinh and Nessim Sibony, Upper bound for the topological entropy of a meromorphic correspondence, Israel J. Math. 163 (2008), 29–44. MR 2391122, DOI 10.1007/s11856-008-0002-9
- Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648690, DOI 10.1007/978-3-642-13171-4_{4}
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- John Erik Fornæss and Nessim Sibony, Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 131–186. Notes partially written by Estela A. Gavosto. MR 1332961
- John Erik Fornaess and Nessim Sibony, Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992) Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 135–182. MR 1369137
- Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, DOI 10.1007/BF02584744
- Paul Gauduchon, Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A387–A390 (French, with English summary). MR 470920
- Alexander Gorodnik and Ralf Spatzier, Exponential mixing of nilmanifold automorphisms, J. Anal. Math. 123 (2014), 355–396. MR 3233585, DOI 10.1007/s11854-014-0024-7
- Mikhaïl Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4, 217–235. MR 2026895
- Vincent Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161 (2005), no. 3, 1589–1607. MR 2179389, DOI 10.4007/annals.2005.161.1589
- Emmanuel Hebey, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, vol. 1635, Springer-Verlag, Berlin, 1996. MR 1481970, DOI 10.1007/BFb0092907
- Heisuke Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. of Math. (2) 75 (1962), 190–208. MR 139182, DOI 10.2307/1970426
- M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, DOI 10.1017/S0143385700002030
- Michel Meo, Image inverse d’un courant positif fermé par une application analytique surjective, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 12, 1141–1144 (French, with English and French summaries). MR 1396655
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
- William Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. MR 260975, DOI 10.2307/2373350
- Alexander Russakovskii and Bernard Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897–932. MR 1488341, DOI 10.1512/iumj.1997.46.1441
- Nessim Sibony, Dynamique des applications rationnelles de $\mathbf P^k$, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185 (French, with English and French summaries). MR 1760844
- G. Vigny, Dirichlet-like space and capacity in complex analysis in several variables, J. Funct. Anal. 252 (2007), no. 1, 247–277. MR 2357357, DOI 10.1016/j.jfa.2007.06.007
- Duc-Viet Vu, Intersection of positive closed currents of higher bidegrees, Michigan Math. J. 65 (2016), no. 4, 863–872. MR 3579190, DOI 10.1307/mmj/1480734024
- Duc-Viet Vu, Locally pluripolar sets are pluripolar, Internat. J. Math. (to appear), arXiv:1812.00465, 2018.
Additional Information
- Duc-Viet Vu
- Affiliation: Mathematical Institute, University of Cologne, 50931 Cologne, Germany; and Thang Long Institute of Mathematics and Applied Sciences, Hanoi, Vietnam
- MR Author ID: 1051002
- Email: vuduc@math.uni-koeln.de
- Received by editor(s): April 3, 2019
- Received by editor(s) in revised form: August 21, 2019
- Published electronically: November 15, 2019
- Additional Notes: This research was supported by a postdoctoral fellowship of the Alexander von Humboldt Foundation.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2229-2250
- MSC (2010): Primary 32U40, 32H50, 37F05
- DOI: https://doi.org/10.1090/tran/7994
- MathSciNet review: 4068297