## Variational principles for spectral radius of weighted endomorphisms of $C(X,D)$

HTML articles powered by AMS MathViewer

- by Bartosz Kosma Kwaśniewski and Andrei Lebedev PDF
- Trans. Amer. Math. Soc.
**373**(2020), 2659-2698 Request permission

## Abstract:

We give formulas for the spectral radius of weighted endomorphisms $a\alpha : C(X,D)\to C(X,D)$, $a\in C(X,D)$, where $X$ is a compact Hausdorff space and $D$ is a unital Banach algebra. Under the assumption that $\alpha$ generates a partial dynamical system $(X,\varphi )$, we establish two kinds of variational principles for $r(a\alpha )$: using linear extensions of $(X,\varphi )$ and using Lyapunov exponents associated with ergodic measures for $(X,\varphi )$. This requires considering (twisted) cocycles over $(X,\varphi )$ with values in an arbitrary Banach algebra $D$, and thus our analysis cannot be reduced to any of the multiplicative ergodic theorems known so far.

The established variational principles apply not only to weighted endomorphisms but also to a vast class of operators acting on Banach spaces that we call abstract weighted shifts associated with $\alpha : C(X,D)\to C(X,D)$. In particular, they are far-reaching generalizations of formulas obtained by Kitover, Lebedev, Latushkin, Stepin, and others. They are most efficient when $D=\mathcal {B}(F)$, for a Banach space $F$, and endomorphisms of $\mathcal {B}(F)$ induced by $\alpha$ are inner isometric. As a by-product we obtain a dynamical variational principle for an arbitrary operator $b\in \mathcal {B}(F)$ and that its spectral radius is always a Lyapunov exponent in some direction $v\in F$ when $F$ is reflexive.

## References

- Anatolij Antonevich,
*Linear functional equations. Operator approach*, Operator Theory: Advances and Applications, vol. 83, Birkhäuser Verlag, Basel, 1996. Translated from the 1988 Russian original by Victor Muzafarov and Andrei Iacob. MR**1382652**, DOI 10.1007/978-3-0348-8977-3 - A. B. Antonevich, V. I. Bakhtin, and A. V. Lebedev,
*On $t$-entropy and variational principle for the spectral radii of transfer and weighted shift operators*, Ergodic Theory Dynam. Systems**31**(2011), no. 4, 995–1042. MR**2818684**, DOI 10.1017/S0143385710000210 - A. B. Antonevich, V. I. Bakhtin, and A. V. Lebedev,
*A road to the spectral radius of transfer operators*, Dynamical systems and group actions, Contemp. Math., vol. 567, Amer. Math. Soc., Providence, RI, 2012, pp. 17–51. MR**2931908**, DOI 10.1090/conm/567/11252 - Anatolij Antonevich and Andrei Lebedev,
*Functional-differential equations. I. $C^*$-theory*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 70, Longman Scientific & Technical, Harlow, 1994. MR**1413495** - Rufus Bowen,
*Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, Second revised edition, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008. With a preface by David Ruelle; Edited by Jean-René Chazottes. MR**2423393**, DOI 10.1007/978-3-540-77695-6 - Ola Bratteli, Palle E. T. Jorgensen, and Geoffrey L. Price,
*Endomorphisms of ${\scr B}({\scr H})$*, Quantization, nonlinear partial differential equations, and operator algebra (Cambridge, MA, 1994) Proc. Sympos. Pure Math., vol. 59, Amer. Math. Soc., Providence, RI, 1996, pp. 93–138. MR**1392986**, DOI 10.1090/pspum/059/1392986 - Michael Brin and Garrett Stuck,
*Introduction to dynamical systems*, Cambridge University Press, Cambridge, 2002. MR**1963683**, DOI 10.1017/CBO9780511755316 - Carmen Chicone and Yuri Latushkin,
*Evolution semigroups in dynamical systems and differential equations*, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Providence, RI, 1999. MR**1707332**, DOI 10.1090/surv/070 - Cecilia González-Tokman and Anthony Quas,
*A concise proof of the multiplicative ergodic theorem on Banach spaces*, J. Mod. Dyn.**9**(2015), 237–255. MR**3400385**, DOI 10.3934/jmd.2015.9.237 - James E. Jamison and M. Rajagopalan,
*Weighted composition operator on $C(X,E)$*, J. Operator Theory**19**(1988), no. 2, 307–317. MR**960982** - Paul Richard Halmos,
*A Hilbert space problem book*, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR**675952**, DOI 10.1007/978-1-4684-9330-6 - Herbert Kamowitz,
*Compact operators of the form $uC_{\varphi }$*, Pacific J. Math.**80**(1979), no. 1, 205–211. MR**534709**, DOI 10.2140/pjm.1979.80.205 - Herbert Kamowitz,
*Compact weighted endomorphisms of $C(X)$*, Proc. Amer. Math. Soc.**83**(1981), no. 3, 517–521. MR**627682**, DOI 10.1090/S0002-9939-1981-0627682-1 - A. K. Kitover,
*The spectrum of automorphisms with weight, and the Kamowitz-Scheinberg theorem*, Funktsional. Anal. i Prilozhen.**13**(1979), no. 1, 70–71 (Russian). MR**527528** - Victor G. Kravchenko and Georgii S. Litvinchuk,
*Introduction to the theory of singular integral operators with shift*, Mathematics and its Applications, vol. 289, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the Russian manuscript by Litvinchuk. MR**1304256**, DOI 10.1007/978-94-011-1180-5 - B. K. Kwaśniewski,
*Spectral analysis of operators generating irreversible dynamical systems*, Doctoral dissertation (in Polish), IM PAN, 2009, Warsaw. - B. K. Kvasnevski,
*$C^*$-algebras associated with reversible extensions of logistic mappings*, Mat. Sb.**203**(2012), no. 10, 71–116 (Russian, with Russian summary); English transl., Sb. Math.**203**(2012), no. 9-10, 1448–1489. MR**3027138**, DOI 10.1070/sm2012v203n10abeh004271 - B. K. Kwaśniewski,
*On transfer operators for $C^*$-dynamical systems*, Rocky Mountain J. Math.**42**(2012), no. 3, 919–936. MR**2966478**, DOI 10.1216/RMJ-2012-42-3-919 - B. K. Kwaśniewski,
*Crossed products by endomorphisms of $C_0(X)$-algebras*, J. Funct. Anal.**270**(2016), no. 6, 2268–2335. MR**3460241**, DOI 10.1016/j.jfa.2016.01.015 - B. K. Kvasnevski and A. V. Lebedev,
*Invertible extensions of noninvertible dynamical systems: the $C^\ast$-method*, Mat. Sb.**199**(2008), no. 11, 45–74 (Russian, with Russian summary); English transl., Sb. Math.**199**(2008), no. 11-12, 1621–1648. MR**2485375**, DOI 10.1070/SM2008v199n11ABEH003975 - B. K. Kwaśniewski and A. V. Lebedev,
*Crossed products by endomorphisms and reduction of relations in relative Cuntz-Pimsner algebras*, J. Funct. Anal.**264**(2013), no. 8, 1806–1847. MR**3022727**, DOI 10.1016/j.jfa.2013.01.018 - M. Laca,
*Endomorphisms of $\scr B(\scr H)$ and Cuntz algebras*, J. Operator Theory**30**(1993), no. 1, 85–108. MR**1302609** - Andrzej Lasota and Michael C. Mackey,
*Chaos, fractals, and noise*, 2nd ed., Applied Mathematical Sciences, vol. 97, Springer-Verlag, New York, 1994. Stochastic aspects of dynamics. MR**1244104**, DOI 10.1007/978-1-4612-4286-4 - Yu. D. Latushkin and A. M. Stëpin,
*The weighted shift operator on a topological Markov chain*, Funktsional. Anal. i Prilozhen.**22**(1988), no. 4, 86–87 (Russian); English transl., Funct. Anal. Appl.**22**(1988), no. 4, 330–331 (1989). MR**977005**, DOI 10.1007/BF01077431 - Yu. D. Latushkin and A. M. Stëpin,
*Weighted shift operators, the spectral theory of linear extensions and a multiplicative ergodic theorem*, Mat. Sb.**181**(1990), no. 6, 723–742 (Russian); English transl., Math. USSR-Sb.**70**(1991), no. 1, 143–163. MR**1072294**, DOI 10.1070/SM1991v070n01ABEH002120 - Yu. D. Latushkin and A. M. Stëpin,
*Weighted shift operators and linear extensions of dynamical systems*, Uspekhi Mat. Nauk**46**(1991), no. 2(278), 85–143, 240 (Russian); English transl., Russian Math. Surveys**46**(1991), no. 2, 95–165. MR**1125273**, DOI 10.1070/RM1991v046n02ABEH002738 - A. V. Lebedev,
*Invertibility of elements in $C^{\ast }$-algebras generated by dynamical systems*, Uspekhi Mat. Nauk**34**(1979), no. 4(208), 199–200 (Russian). MR**548434** - A. V. Lebedev and A. Odzievich,
*Extensions of $C^\ast$-algebras by partial isometries*, Mat. Sb.**195**(2004), no. 7, 37–70 (Russian, with Russian summary); English transl., Sb. Math.**195**(2004), no. 7-8, 951–982. MR**2101333**, DOI 10.1070/SM2004v195n07ABEH000834 - G. G. Lorentz,
*A contribution to the theory of divergent sequences*, Acta Math.**80**(1948), 167–190. MR**27868**, DOI 10.1007/BF02393648 - Mostafa Mbekhta,
*Partial isometries and generalized inverses*, Acta Sci. Math. (Szeged)**70**(2004), no. 3-4, 767–781. MR**2107540** - V. I. Oseledec,
*A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems*, Trudy Moskov. Mat. Obšč.**19**(1968), 179–210 (Russian). MR**0240280** - Robert R. Phelps,
*Lectures on Choquet’s theorem*, 2nd ed., Lecture Notes in Mathematics, vol. 1757, Springer-Verlag, Berlin, 2001. MR**1835574**, DOI 10.1007/b76887 - Iain Raeburn and Dana P. Williams,
*Morita equivalence and continuous-trace $C^*$-algebras*, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR**1634408**, DOI 10.1090/surv/060 - David Ruelle,
*Thermodynamic formalism*, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR**511655** - David Ruelle,
*Characteristic exponents and invariant manifolds in Hilbert space*, Ann. of Math. (2)**115**(1982), no. 2, 243–290. MR**647807**, DOI 10.2307/1971392 - David Ruelle,
*The thermodynamic formalism for expanding maps*, Comm. Math. Phys.**125**(1989), no. 2, 239–262. MR**1016871**, DOI 10.1007/BF01217908 - P. Thieullen,
*Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension*, Ann. Inst. H. Poincaré Anal. Non Linéaire**4**(1987), no. 1, 49–97 (French, with English summary). MR**877991**, DOI 10.1016/S0294-1449(16)30373-0 - Peter Walters,
*An introduction to ergodic theory*, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR**648108**, DOI 10.1007/978-1-4612-5775-2 - Wiesław Żelazko,
*Banach algebras*, Elsevier Publishing Co., Amsterdam-London-New York; PWN—Polish Scientific Publishers, Warsaw, 1973. Translated from the Polish by Marcin E. Kuczma. MR**0448079**

## Additional Information

**Bartosz Kosma Kwaśniewski**- Affiliation: Faculty of Mathematics, University of Białystok, K. Ciołkowskiego 1M, 15-245 Białystok, Poland
- ORCID: 0000-0002-5173-0519
- Email: bartoszk@math.uwb.edu.pl
**Andrei Lebedev**- Affiliation: Belorussian State University, Nesavisimosti av., 4, Minsk, Belarus; and Faculty of Mathematics, University of Białystok, K. Ciołkowskiego 1M, 15-245 Białystok, Poland
- MR Author ID: 194196
- Email: lebedev@bsu.by
- Received by editor(s): March 18, 2019
- Received by editor(s) in revised form: August 21, 2019
- Published electronically: January 7, 2020
- Additional Notes: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 621724, as well as Polish National Science Centre grant number DEC-2011/01/D/ST1/04112
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 2659-2698 - MSC (2010): Primary 47B48, 37A99; Secondary 37H15, 47A10
- DOI: https://doi.org/10.1090/tran/7993
- MathSciNet review: 4069230