Commensurations of subgroups of $\mathrm {Out}(F_N)$
HTML articles powered by AMS MathViewer
- by Camille Horbez and Richard D. Wade PDF
- Trans. Amer. Math. Soc. 373 (2020), 2699-2742 Request permission
Abstract:
A theorem of Farb and Handel [Publ. Math. Inst. Hautes Études Sci. 105 (2007), pp. 1–48] asserts that for $N\ge 4$, the natural inclusion from $\mathrm {Out}(F_N)$ into its abstract commensurator is an isomorphism. We give a new proof of their result, which enables us to generalize it to the case where $N=3$. More generally, we give sufficient conditions on a subgroup $\Gamma$ of $\mathrm {Out}(F_N)$ ensuring that its abstract commensurator $\mathrm {Comm}(\Gamma )$ is isomorphic to its relative commensurator in $\mathrm {Out}(F_N)$. In particular, we prove that the abstract commensurator of the Torelli subgroup $\mathrm {IA}_N$ for all $N\ge 3$, or more generally any term of the Andreadakis–Johnson filtration if $N\ge 4$, is equal to $\mathrm {Out}(F_N)$. Likewise, if $\Gamma$ is the kernel of the natural map from $\mathrm {Out}(F_N)$ to the outer automorphism group of a free Burnside group of rank $N\geq 3$, then the natural map $\mathrm {Out}(F_N)\to \mathrm {Comm}(\Gamma )$ is an isomorphism.References
- J. Aramayona, T. Ghaswala, A. E. Kent, A. Mcleay, J. Tao, and R. R. Winarski, Big Torelli groups: generation and commensuration, arXiv:1810.03453, (2018).
- Javier Aramayona and Juan Souto, Automorphisms of the graph of free splittings, Michigan Math. J. 60 (2011), no. 3, 483–493. MR 2861084, DOI 10.1307/mmj/1320763044
- L. Bartholdi and O. Bogopolski, On abstract commensurators of groups, J. Group Theory 13 (2010), no. 6, 903–922. MR 2736164, DOI 10.1515/JGT.2010.021
- M. Bestvina and M. R. Bridson, Rigidity of the complex of free factors, in preparation.
- J. Bavard, S. Dowdall, and K. Rafi, Isomorphisms Between Big Mapping Class Groups, Int. Math. Res. Notices, 2018.
- Mladen Bestvina and Mark Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014), 104–155. MR 3177291, DOI 10.1016/j.aim.2014.02.001
- Tara E. Brendle and Dan Margalit, Commensurations of the Johnson kernel, Geom. Topol. 8 (2004), 1361–1384. MR 2119299, DOI 10.2140/gt.2004.8.1361
- Tara E. Brendle and Dan Margalit, Normal subgroups of mapping class groups and the metaconjecture of Ivanov, J. Amer. Math. Soc. 32 (2019), no. 4, 1009–1070. MR 4013739, DOI 10.1090/jams/927
- Armand Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966), 78–89. MR 205999, DOI 10.1515/crll.1966.224.78
- M. R. Bridson, A. Pettet, and J. Souto, The abstract commensurator of the Johnson kernels, in preparation.
- Mladen Bestvina and Patrick Reynolds, The boundary of the complex of free factors, Duke Math. J. 164 (2015), no. 11, 2213–2251. MR 3385133, DOI 10.1215/00127094-3129702
- Martin R. Bridson and Karen Vogtmann, Automorphisms of automorphism groups of free groups, J. Algebra 229 (2000), no. 2, 785–792. MR 1769698, DOI 10.1006/jabr.2000.8327
- Martin R. Bridson and Karen Vogtmann, The symmetries of outer space, Duke Math. J. 106 (2001), no. 2, 391–409. MR 1813435, DOI 10.1215/S0012-7094-01-10625-X
- Pierre-Emmanuel Caprace, Yves Cornulier, Nicolas Monod, and Romain Tessera, Amenable hyperbolic groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 11, 2903–2947. MR 3420526, DOI 10.4171/JEMS/575
- Marshall M. Cohen and Martin Lustig, Very small group actions on $\textbf {R}$-trees and Dehn twist automorphisms, Topology 34 (1995), no. 3, 575–617. MR 1341810, DOI 10.1016/0040-9383(94)00038-M
- Marshall M. Cohen and Martin Lustig, The conjugacy problem for Dehn twist automorphisms of free groups, Comment. Math. Helv. 74 (1999), no. 2, 179–200. MR 1691946, DOI 10.1007/s000140050085
- Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91–119. MR 830040, DOI 10.1007/BF01388734
- F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152. MR 3589159, DOI 10.1090/memo/1156
- Warren Dicks and Enric Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemporary Mathematics, vol. 195, American Mathematical Society, Providence, RI, 1996. MR 1385923, DOI 10.1090/conm/195
- Benson Farb and Michael Handel, Commensurations of $\textrm {Out}(\textrm {F}_n)$, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 1–48. MR 2354204, DOI 10.1007/s10240-007-0007-7
- Mark Feighn and Michael Handel, Abelian subgroups of $\textrm {Out}(F_n)$, Geom. Topol. 13 (2009), no. 3, 1657–1727. MR 2496054, DOI 10.2140/gt.2009.13.1657
- B. Farb and N. V. Ivanov, Torelli buildings and their automorphisms, arXiv:1410.6223, (2014).
- V. Guirardel and C. Horbez, Algebraic laminations for free products and arational trees, arXiv:1709.05664, (2017).
- V. Guirardel and C. Horbez, Boundaries of relative factor graphs and subgroup classification for automorphisms of free products, arXiv:1901.05046, (2019).
- V. Guirardel and G. Levitt. in preparation.
- Damien Gaboriau and Gilbert Levitt, The rank of actions on $\textbf {R}$-trees, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 5, 549–570. MR 1341661, DOI 10.24033/asens.1725
- Vincent Guirardel and Gilbert Levitt, Splittings and automorphisms of relatively hyperbolic groups, Groups Geom. Dyn. 9 (2015), no. 2, 599–663. MR 3356977, DOI 10.4171/GGD/322
- Vincent Guirardel and Gilbert Levitt, JSJ decompositions of groups, Astérisque 395 (2017), vii+165 (English, with English and French summaries). MR 3758992
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Vincent Guirardel and Andrew Sale, Vastness properties of automorphism groups of RAAGs, J. Topol. 11 (2018), no. 1, 30–64. MR 3784226, DOI 10.1112/topo.12047
- Vincent Guirardel, Limit groups and groups acting freely on $\Bbb R^n$-trees, Geom. Topol. 8 (2004), 1427–1470. MR 2119301, DOI 10.2140/gt.2004.8.1427
- Radhika Gupta, Loxodromic elements for the relative free factor complex, Geom. Dedicata 196 (2018), 91–121. MR 3853630, DOI 10.1007/s10711-017-0310-5
- U. Hamenstädt, The boundary of the free splitting graph and of the free factor graph, arXiv:1211.1630v5, (2014).
- Allen Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39–62. MR 1314940, DOI 10.1007/BF02565999
- Sebastian Hensel, Rigidity and flexibility for handlebody groups, Comment. Math. Helv. 93 (2018), no. 2, 335–358. MR 3811754, DOI 10.4171/CMH/436
- M. Handel and L. Mosher, Subgroup decomposition in $\mathrm {Out}({F}_n)$ Part II: A relative Kolchin theorem, arXiv:1302.2379, (2013).
- Michael Handel and Lee Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672. MR 3073931, DOI 10.2140/gt.2013.17.1581
- C. Horbez, The Tits alternative for the automorphism group of a free product, arXiv:1408.0546v2, (2014).
- Allen Hatcher and Karen Vogtmann, Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004), 1253–1272. MR 2113904, DOI 10.2140/agt.2004.4.1253
- Camille Horbez and Richard D. Wade, Automorphisms of graphs of cyclic splittings of free groups, Geom. Dedicata 178 (2015), 171–187. MR 3397489, DOI 10.1007/s10711-015-0051-2
- Nikolai V. Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices 14 (1997), 651–666. MR 1460387, DOI 10.1155/S1073792897000433
- D. G. Khramtsov, Completeness of groups of outer automorphisms of free groups, Group-theoretic investigations (Russian), Akad. Nauk SSSR Ural. Otdel., Sverdlovsk, 1990, pp. 128–143 (Russian). MR 1159135
- Yoshikata Kida, The co-Hopfian property of the Johnson kernel and the Torelli group, Osaka J. Math. 50 (2013), no. 2, 309–337. MR 3080802
- Ilya Kapovich and Martin Lustig, Stabilizers of $\Bbb R$-trees with free isometric actions of $F_N$, J. Group Theory 14 (2011), no. 5, 673–694. MR 2831965, DOI 10.1515/JGT.2010.070
- Gilbert Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005), 49–70. MR 2174093, DOI 10.1007/s10711-004-1492-1
- Gilbert Levitt and Martin Lustig, Irreducible automorphisms of $F_n$ have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003), no. 1, 59–72. MR 1955207, DOI 10.1017/S1474748003000033
- G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 21–34 (Russian). MR 0492072
- A. Minasyan and D. Osin, Normal automorphisms of relatively hyperbolic groups, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6079–6103. MR 2661509, DOI 10.1090/S0002-9947-2010-05067-6
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383, DOI 10.1007/BF02684590
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- A. Martino and E. Ventura, Fixed subgroups are compressed in free groups, Comm. Algebra 32 (2004), no. 10, 3921–3935. MR 2097438, DOI 10.1081/AGB-200027786
- Suhas Pandit, The complex of non-separating embedded spheres, Rocky Mountain J. Math. 44 (2014), no. 6, 2029–2054. MR 3310960, DOI 10.1216/RMJ-2014-44-6-2029
- Frédéric Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), no. 1, 53–80 (French). MR 958589, DOI 10.1007/BF01394344
- Gopal Prasad, Strong rigidity of $\textbf {Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI 10.1007/BF01418789
- John Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969. MR 0415622
- John R. Stallings, Whitehead graphs on handlebodies, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 317–330. MR 1714852
- J. H. C. Whitehead, On Certain Sets of Elements in a Free Group, Proc. London Math. Soc. (2) 41 (1936), no. 1, 48–56. MR 1575455, DOI 10.1112/plms/s2-41.1.48
Additional Information
- Camille Horbez
- Affiliation: CNRS, Laboratoire de Mathématique d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, F-91405 Orsay, France
- MR Author ID: 1008174
- Email: camille.horbez@math.u-psud.fr
- Richard D. Wade
- Affiliation: Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- MR Author ID: 951412
- Email: wade@maths.ox.ac.uk
- Received by editor(s): February 22, 2019
- Received by editor(s) in revised form: August 19, 2019, and August 22, 2019
- Published electronically: January 23, 2020
- Additional Notes: The first author acknowledges support from the Agence Nationale de la Recherche under Grant ANR-16-CE40-0006
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2699-2742
- MSC (2010): Primary 20E08, 20E36, 20F28, 20F65
- DOI: https://doi.org/10.1090/tran/7991
- MathSciNet review: 4069231