Limit operator theory for groupoids
HTML articles powered by AMS MathViewer
- by Kyle Austin and Jiawen Zhang PDF
- Trans. Amer. Math. Soc. 373 (2020), 2861-2911 Request permission
Abstract:
We extend the symbol calculus and study the limit operator theory for $\sigma$-compact, étale, and amenable groupoids, in the Hilbert space case. This approach not only unifies various existing results which include the cases of exact groups and discrete metric spaces with Property A, but also establish new limit operator theories for group/groupoid actions and uniform Roe algebras of groupoids. In the process, we extend a monumental result by Exel, Nistor, and Prudhon, showing that the invertibility of an element in the groupoid $C^*$-algebra of a $\sigma$-compact amenable groupoid with a Haar system is equivalent to the invertibility of its images under regular representations.References
- Claire Anantharaman-Delaroche, Fibrewise equivariant compactifications under étale groupoid actions.
- Claire Anantharaman-Delaroche, Exact groupoids, arxiv preprint arXiv:1605.05117 (2016).
- C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36, L’Enseignement Mathématique, Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain. MR 1799683
- Kyle Austin and Magdalena C. Georgescu, Inverse systems of groupoids, with applications to groupoid $C^*$-algebras, J. Funct. Anal. 276 (2019), no. 3, 716–750. MR 3906290, DOI 10.1016/j.jfa.2018.05.013
- Siegfried Beckus, Jean Bellissard, and Giuseppe De Nittis, Spectral continuity for aperiodic quantum systems I. General theory, J. Funct. Anal. 275 (2018), no. 11, 2917–2977. MR 3861728, DOI 10.1016/j.jfa.2018.09.004
- Siegfried Beckus, Daniel Lenz, Marko Lindner, and Christian Seifert, On the spectrum of operator families on discrete groups over minimal dynamical systems, Math. Z. 287 (2017), no. 3-4, 993–1007. MR 3719524, DOI 10.1007/s00209-017-1856-5
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- A. Buss and S. Sims, Opposite algebras of groupoid ${C}^*$-algebras, arxiv preprint arxiv:1708.04105 (2017).
- Catarina Carvalho, Victor Nistor, and Yu Qiao, Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras, Electron. Res. Announc. Math. Sci. 24 (2017), 68–77. MR 3699060, DOI 10.3934/era.2017.24.008
- Catarina Carvalho, Victor Nistor, and Yu Qiao, Fredholm conditions on non-compact manifolds: theory and examples, Operator theory, operator algebras, and matrix theory, Oper. Theory Adv. Appl., vol. 267, Birkhäuser/Springer, Cham, 2018, pp. 79–122. MR 3837632
- Simon N. Chandler-Wilde and Marko Lindner, Limit operators, collective compactness, and the spectral theory of infinite matrices, Mem. Amer. Math. Soc. 210 (2011), no. 989, viii+111. MR 2790742, DOI 10.1090/S0065-9266-2010-00626-4
- Ruy Exel, Invertibility in groupoid $C^*$-algebras, Operator theory, operator algebras and applications, Oper. Theory Adv. Appl., vol. 242, Birkhäuser/Springer, Basel, 2014, pp. 173–183. MR 3243289, DOI 10.1007/978-3-0348-0816-3_{9}
- Vladimir Georgescu, On the structure of the essential spectrum of elliptic operators on metric spaces, J. Funct. Anal. 260 (2011), no. 6, 1734–1765. MR 2754891, DOI 10.1016/j.jfa.2010.12.025
- Vladimir Georgescu and Andrei Iftimovici, Crossed products of $C^\ast$-algebras and spectral analysis of quantum Hamiltonians, Comm. Math. Phys. 228 (2002), no. 3, 519–560. MR 1918787, DOI 10.1007/s002200200669
- Vladimir Georgescu and Andrei Iftimovici, Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory, Rev. Math. Phys. 18 (2006), no. 4, 417–483. MR 2245367, DOI 10.1142/S0129055X06002693
- N. Higson, V. Lafforgue, and G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002), no. 2, 330–354. MR 1911663, DOI 10.1007/s00039-002-8249-5
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323, DOI 10.1090/surv/012
- Marius Ionescu and Dana Williams, The generalized Effros-Hahn conjecture for groupoids, Indiana Univ. Math. J. 58 (2009), no. 6, 2489–2508. MR 2603756, DOI 10.1512/iumj.2009.58.3746
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- Xin Li, Constructing Cartan subalgebras in classifiable stably finite ${C}^*$-algebras, arxiv preprint arXiv:1802.01190 (2017).
- Marko Lindner, Infinite matrices and their finite sections, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. An introduction to the limit operator method. MR 2253942
- B. V. Lange and Vladimir Samuilovich Rabinovich, Noether property for multidimensional discrete convolution operators, Mathematical Notes of the Academy of Sciences of the USSR 37 (1985), no. 3, 228–237.
- Marko Lindner and Markus Seidel, An affirmative answer to a core issue on limit operators, J. Funct. Anal. 267 (2014), no. 3, 901–917. MR 3212726, DOI 10.1016/j.jfa.2014.03.002
- Marius Mantoiu and Victor Nistor, Spectral theory in a twisted groupoid setting I: Spectra, pseudospectra and numerical ranges, arxiv preprint https://arxiv.org/abs/1809.03347v1 (2018).
- Marius Măntoiu and Victor Nistor, Spectral theory in a twisted groupoid setting: Spectral decompositions, localization and fredholmness, arxiv preprint arXiv:1812.04740 (2018).
- Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Continuous-trace groupoid $C^\ast$-algebras. III, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3621–3641. MR 1348867, DOI 10.1090/S0002-9947-96-01610-8
- Victor Nistor and Nicolas Prudhon, Exhaustive families of representations and spectra of pseudodifferential operators, J. Operator Theory 78 (2017), no. 2, 247–279. MR 3725506, DOI 10.7900/jot
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266, DOI 10.1007/BFb0091072
- Jean Renault, Représentation des produits croisés d’algèbres de groupoïdes, J. Operator Theory 18 (1987), no. 1, 67–97 (French). MR 912813
- Steffen Roch, Algebras of approximation sequences: structure of fractal algebras, Singular integral operators, factorization and applications, Oper. Theory Adv. Appl., vol. 142, Birkhäuser, Basel, 2003, pp. 287–310. MR 2167373
- John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. MR 2007488, DOI 10.1090/ulect/031
- John Roe, Band-dominated Fredholm operators on discrete groups, Integral Equations Operator Theory 51 (2005), no. 3, 411–416. MR 2126819, DOI 10.1007/s00020-004-1326-4
- Vladimir S. Rabinovich, Steffen Roch, and John Roe, Fredholm indices of band-dominated operators, Integral Equations Operator Theory 49 (2004), no. 2, 221–238. MR 2060373, DOI 10.1007/s00020-003-1285-1
- V. S. Rabinovich, S. Roch, and B. Silbermann, Fredholm theory and finite section method for band-dominated operators, Integral Equations Operator Theory 30 (1998), no. 4, 452–495. Dedicated to the memory of Mark Grigorievich Krein (1907–1989). MR 1622360, DOI 10.1007/BF01257877
- Vladimir Rabinovich, Steffen Roch, and Bernd Silbermann, Limit operators and their applications in operator theory, Operator Theory: Advances and Applications, vol. 150, Birkhäuser Verlag, Basel, 2004. MR 2075882, DOI 10.1007/978-3-0348-7911-8
- Markus Seidel, Fredholm theory for band-dominated and related operators: a survey, Linear Algebra Appl. 445 (2014), 373–394. MR 3151282, DOI 10.1016/j.laa.2013.11.048
- Aidan Sims, étale groupoids and their ${C}^*$-algebras, arxiv preprint arXiv:1710.10897 (2017).
- G. Skandalis, J. L. Tu, and G. Yu, The coarse Baum-Connes conjecture and groupoids, Topology 41 (2002), no. 4, 807–834. MR 1905840, DOI 10.1016/S0040-9383(01)00004-0
- Ján Špakula and Rufus Willett, A metric approach to limit operators, Trans. Amer. Math. Soc. 369 (2017), no. 1, 263–308. MR 3557774, DOI 10.1090/tran/6660
- Xiang Tang, Rufus Willett, and Yi-Jun Yao, Roe $C^*$-algebra for groupoids and generalized Lichnerowicz vanishing theorem for foliated manifolds, Math. Z. 290 (2018), no. 3-4, 1309–1338. MR 3856855, DOI 10.1007/s00209-018-2064-7
- Rufus Willett, Band-dominated operators and the stable Higson corona, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–The Pennsylvania State University. MR 2713972
- Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201–240. MR 1728880, DOI 10.1007/s002229900032
- Jiawen Zhang, Extreme cases of limit operator theory on metric spaces, Integral Equations Operator Theory 90 (2018), no. 6, Paper No. 73, 28. MR 3881819, DOI 10.1007/s00020-018-2498-7
Additional Information
- Kyle Austin
- Affiliation: Weizmann Institute of Science and Technology, Department of Mathematics, 234 Herzl Street, POB 26, Rehovot 7610001, Israel
- MR Author ID: 1074025
- Email: ksaustin88@gmail.com
- Jiawen Zhang
- Affiliation: University of Southampton, School of Mathematics, Building 54, Highfield, Southampton SO17 1BJ, United Kingdom
- MR Author ID: 1108765
- Email: jiawen.zhang@soton.ac.uk
- Received by editor(s): April 25, 2019
- Received by editor(s) in revised form: September 11, 2019
- Published electronically: January 28, 2020
- Additional Notes: The first author was supported by the Israeli Science Foundation grants ISF-Moked grant 2095/15 and grant No. 522/14.
The second author was supported by the Sino-British Trust Fellowship by Royal Society, International Exchanges 2017 Cost Share (China) grant EC$\backslash$NSFC$\backslash$170341, NSFC11871342, and NSFC11811530291. - © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2861-2911
- MSC (2010): Primary 47A53; Secondary 22A22, 46L55
- DOI: https://doi.org/10.1090/tran/8005
- MathSciNet review: 4069235