## Decay estimates for higher-order elliptic operators

HTML articles powered by AMS MathViewer

- by Hongliang Feng, Avy Soffer, Zhao Wu and Xiaohua Yao PDF
- Trans. Amer. Math. Soc.
**373**(2020), 2805-2859 Request permission

## Abstract:

This paper is mainly devoted to the study of time decay estimates of the higher-order Schrödinger-type operator $H=(-\Delta )^{m}+V(x)$ in $\mathbf {R}^{n}$ for $n>2m$ and $m\in \mathbf {N}$. For certain decay potentials $V(x)$, we first derive the asymptotic expansions of resolvent $R_{V}(z)$ near zero threshold with the presence of zero resonance or zero eigenvalue, as well as identify the resonance space for each kind of zero resonance which displays different effects on time decay rate. Then we establish Kato-Jensen-type estimates and local decay estimates for higher-order Schrödinger propagator $e^{-itH}$ in the presence of zero resonance or zero eigenvalue. As a consequence, the endpoint Strichartz estimate and $L^{p}$-decay estimates can also be obtained. Finally, by a virial argument, a criterion on the absence of positive embedding eigenvalues is given for $(-\Delta )^{m}+V(x)$ with a repulsive potential.## References

- Werner O. Amrein, Anne Boutet de Monvel, and Vladimir Georgescu,
*$C_0$-groups, commutator methods and spectral theory of $N$-body Hamiltonians*, Modern Birkhäuser Classics, Birkhäuser/Springer, Basel, 1996. [2013] reprint of the 1996 edition. MR**3136195**, DOI 10.1007/978-3-0348-7762-6 - Shmuel Agmon,
*Lower bounds for solutions of Schrödinger equations*, J. Analyse Math.**23**(1970), 1–25. MR**276624**, DOI 10.1007/BF02795485 - Shmuel Agmon,
*Spectral properties of Schrödinger operators and scattering theory*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**2**(1975), no. 2, 151–218. MR**397194** - N. Aronszajn and K. T. Smith,
*Theory of Bessel potentials. I*, Ann. Inst. Fourier (Grenoble)**11**(1961), 385–475 (English, with French summary). MR**143935**, DOI 10.5802/aif.116 - M. Sh. Birman and M. Z. Solomyak,
*Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations*, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90) Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 1–55. MR**1306507** - Thierry Cazenave,
*Semilinear Schrödinger equations*, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR**2002047**, DOI 10.1090/cln/010 - O. Costin and A. Soffer,
*Resonance theory for Schrödinger operators*, Comm. Math. Phys.**224**(2001), no. 1, 133–152. Dedicated to Joel L. Lebowitz. MR**1868995**, DOI 10.1007/s002200100558 - Piero D’Ancona,
*Kato smoothing and Strichartz estimates for wave equations with magnetic potentials*, Comm. Math. Phys.**335**(2015), no. 1, 1–16. MR**3314497**, DOI 10.1007/s00220-014-2169-8 - E. B. Davies,
*Limits on $L^p$ regularity of self-adjoint elliptic operators*, J. Differential Equations**135**(1997), no. 1, 83–102. MR**1434916**, DOI 10.1006/jdeq.1996.3219 - Qingquan Deng, Yong Ding, and Xiaohua Yao,
*Gaussian bounds for higher-order elliptic differential operators with Kato type potentials*, J. Funct. Anal.**266**(2014), no. 8, 5377–5397. MR**3177340**, DOI 10.1016/j.jfa.2014.02.014 - Piero D’Ancona and Luca Fanelli,
*Strichartz and smoothing estimates of dispersive equations with magnetic potentials*, Comm. Partial Differential Equations**33**(2008), no. 4-6, 1082–1112. MR**2424390**, DOI 10.1080/03605300701743749 - E. B. Davies and A. M. Hinz,
*Explicit constants for Rellich inequalities in $L_p(\Omega )$*, Math. Z.**227**(1998), no. 3, 511–523. MR**1612685**, DOI 10.1007/PL00004389 - E. B. Davies and A. M. Hinz,
*Kato class potentials for higher order elliptic operators*, J. London Math. Soc. (2)**58**(1998), no. 3, 669–678. MR**1678156**, DOI 10.1112/S0024610798006565 - William R. Green and Ebru Toprak,
*On the fourth order Schrödinger equation in four dimensions: dispersive estimates and zero energy resonances*, J. Differential Equations**267**(2019), no. 3, 1899–1954. MR**3945621**, DOI 10.1016/j.jde.2019.03.004 - M. Burak Erdoğan and Wilhelm Schlag,
*Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. I*, Dyn. Partial Differ. Equ.**1**(2004), no. 4, 359–379. MR**2127577**, DOI 10.4310/DPDE.2004.v1.n4.a1 - M. Burak Erdoğan and Wilhelm Schlag,
*Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II*, J. Anal. Math.**99**(2006), 199–248. MR**2279551**, DOI 10.1007/BF02789446 - Richard Froese, Ira Herbst, Maria Hoffmann-Ostenhof, and Thomas Hoffmann-Ostenhof,
*On the absence of positive eigenvalues for one-body Schrödinger operators*, J. Analyse Math.**41**(1982), 272–284. MR**687957**, DOI 10.1007/BF02803406 - Hongliang Feng, Avy Soffer, and Xiaohua Yao,
*Decay estimates and Strichartz estimates of fourth-order Schrödinger operator*, J. Funct. Anal.**274**(2018), no. 2, 605–658. MR**3724151**, DOI 10.1016/j.jfa.2017.10.014 - Hongliang Feng, Zhao Wu, and Xiaohua Yao,
*Time asymptotic expansions of solution for fourth-order schrödinger equation with zero resonance or eigenvalue*, https://arxiv.org/abs/1812.00223 (2018). - Michael Goldberg and William R. Green,
*Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues I: The odd dimensional case*, J. Funct. Anal.**269**(2015), no. 3, 633–682. MR**3350725**, DOI 10.1016/j.jfa.2015.04.004 - Michael Goldberg and William R. Green,
*Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues II. The even dimensional case*, J. Spectr. Theory**7**(2017), no. 1, 33–86. MR**3629407**, DOI 10.4171/JST/155 - Vladimir Georgescu, Manuel Larenas, and Avy Soffer,
*Abstract theory of pointwise decay with applications to wave and Schrödinger equations*, Ann. Henri Poincaré**17**(2016), no. 8, 2075–2101. MR**3522025**, DOI 10.1007/s00023-016-0459-8 - M. Goldberg and W. Schlag,
*Dispersive estimates for Schrödinger operators in dimensions one and three*, Comm. Math. Phys.**251**(2004), no. 1, 157–178. MR**2096737**, DOI 10.1007/s00220-004-1140-5 - William R. Green and Ebru Toprak,
*On the fourth order Schrödinger equation in four dimensions: dispersive estimates and zero energy resonances*, J. Differential Equations**267**(2019), no. 3, 1899–1954. MR**3945621**, DOI 10.1016/j.jde.2019.03.004 - Michael Goldberg and Monica Visan,
*A counterexample to dispersive estimates for Schrödinger operators in higher dimensions*, Comm. Math. Phys.**266**(2006), no. 1, 211–238. MR**2231971**, DOI 10.1007/s00220-006-0013-5 - Lars Hörmander,
*The analysis of linear partial differential operators. II*, Classics in Mathematics, Springer-Verlag, Berlin, 2005. Differential operators with constant coefficients; Reprint of the 1983 original. MR**2108588**, DOI 10.1007/b138375 - I. Herbst and E. Skibsted,
*Decay of eigenfunctions of elliptic PDE’s, I*, Adv. Math.**270**(2015), 138–180. MR**3286533**, DOI 10.1016/j.aim.2014.11.001 - I. Herbst and E. Skibsted,
*Decay of eigenfunctions of elliptic PDE’s, II*, Adv. Math.**306**(2017), 177–199. MR**3581301**, DOI 10.1016/j.aim.2016.10.018 - A. D. Ionescu and D. Jerison,
*On the absence of positive eigenvalues of Schrödinger operators with rough potentials*, Geom. Funct. Anal.**13**(2003), no. 5, 1029–1081. MR**2024415**, DOI 10.1007/s00039-003-0439-2 - Arne Jensen,
*Spectral properties of Schrödinger operators and time-decay of the wave functions results in $L^{2}(\textbf {R}^{m})$, $m\geq 5$*, Duke Math. J.**47**(1980), no. 1, 57–80. MR**563367** - Arne Jensen,
*Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^{2}(\textbf {R}^{4})$*, J. Math. Anal. Appl.**101**(1984), no. 2, 397–422. MR**748579**, DOI 10.1016/0022-247X(84)90110-0 - Arne Jensen and Tosio Kato,
*Spectral properties of Schrödinger operators and time-decay of the wave functions*, Duke Math. J.**46**(1979), no. 3, 583–611. MR**544248** - Arne Jensen and Gheorghe Nenciu,
*A unified approach to resolvent expansions at thresholds*, Rev. Math. Phys.**13**(2001), no. 6, 717–754. MR**1841744**, DOI 10.1142/S0129055X01000843 - Arne Jensen and Gheorghe Nenciu,
*Erratum: “A unified approach to resolvent expansions at thresholds” [Rev. Math. Phys. 13 (2001), no. 6, 717–754; MR1841744]*, Rev. Math. Phys.**16**(2004), no. 5, 675–677. MR**2079122**, DOI 10.1142/S0129055X04002102 - J.-L. Journé, A. Soffer, and C. D. Sogge,
*Decay estimates for Schrödinger operators*, Comm. Pure Appl. Math.**44**(1991), no. 5, 573–604. MR**1105875**, DOI 10.1002/cpa.3160440504 - Tosio Kato,
*Growth properties of solutions of the reduced wave equation with a variable coefficient*, Comm. Pure Appl. Math.**12**(1959), 403–425. MR**108633**, DOI 10.1002/cpa.3160120302 - JinMyong Kim, Anton Arnold, and Xiaohua Yao,
*Global estimates of fundamental solutions for higher-order Schrödinger equations*, Monatsh. Math.**168**(2012), no. 2, 253–266. MR**2984150**, DOI 10.1007/s00605-011-0350-0 - Alexander Komech and Elena Kopylova,
*Dispersion decay and scattering theory*, John Wiley & Sons, Inc., Hoboken, NJ, 2012. MR**3015024**, DOI 10.1002/9781118382868 - Markus Keel and Terence Tao,
*Endpoint Strichartz estimates*, Amer. J. Math.**120**(1998), no. 5, 955–980. MR**1646048**, DOI 10.1353/ajm.1998.0039 - Herbert Koch and Daniel Tataru,
*Carleman estimates and absence of embedded eigenvalues*, Comm. Math. Phys.**267**(2006), no. 2, 419–449. MR**2252331**, DOI 10.1007/s00220-006-0060-y - S. T. Kuroda,
*An introduction to scattering theory*, Lecture Notes Series, vol. 51, Aarhus Universitet, Matematisk Institut, Aarhus, 1978. MR**528757** - Manuel Larenas and Avy Soffer,
*Abstract theory of decay estimates: perturbed hamiltonians*, https://arxiv.org/abs/1508.04490 (2015). - E. Mourre,
*Absence of singular continuous spectrum for certain selfadjoint operators*, Comm. Math. Phys.**78**(1980/81), no. 3, 391–408. MR**603501**, DOI 10.1007/BF01942331 - Minoru Murata,
*Asymptotic expansions in time for solutions of Schrödinger-type equations*, J. Funct. Anal.**49**(1982), no. 1, 10–56. MR**680855**, DOI 10.1016/0022-1236(82)90084-2 - Minoru Murata,
*High energy resolvent estimates. II. Higher order elliptic operators*, J. Math. Soc. Japan**36**(1984), no. 1, 1–10. MR**723588**, DOI 10.2969/jmsj/03610001 - Jacob S. Møller and Matthias Westrich,
*Regularity of eigenstates in regular Mourre theory*, J. Funct. Anal.**260**(2011), no. 3, 852–878. MR**2737399**, DOI 10.1016/j.jfa.2010.10.006 - Jeffrey Rauch,
*Local decay of scattering solutions to Schrödinger’s equation*, Comm. Math. Phys.**61**(1978), no. 2, 149–168. MR**495958**, DOI 10.1007/BF01609491 - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. IV. Analysis of operators*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**0493421** - Igor Rodnianski and Wilhelm Schlag,
*Time decay for solutions of Schrödinger equations with rough and time-dependent potentials*, Invent. Math.**155**(2004), no. 3, 451–513. MR**2038194**, DOI 10.1007/s00222-003-0325-4 - Martin Schechter,
*Spectra of partial differential operators*, 2nd ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. MR**869254** - W. Schlag,
*Dispersive estimates for Schrödinger operators in dimension two*, Comm. Math. Phys.**257**(2005), no. 1, 87–117. MR**2163570**, DOI 10.1007/s00220-004-1262-9 - W. Schlag,
*Dispersive estimates for Schrödinger operators: a survey*, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 255–285. MR**2333215** - Barry Simon,
*On positive eigenvalues of one-body Schrödinger operators*, Comm. Pure Appl. Math.**22**(1969), 531–538. MR**247300**, DOI 10.1002/cpa.3160220405 - Barry Simon,
*Harmonic analysis*, A Comprehensive Course in Analysis, Part 3, American Mathematical Society, Providence, RI, 2015. MR**3410783**, DOI 10.1090/simon/003 - Barry Simon,
*Operator theory*, A Comprehensive Course in Analysis, Part 4, American Mathematical Society, Providence, RI, 2015. MR**3364494**, DOI 10.1090/simon/004 - Barry Simon,
*Tosio Kato’s work on non-relativistic quantum mechanics: part 1*, Bull. Math. Sci.**8**(2018), no. 1, 121–232. MR**3775269**, DOI 10.1007/s13373-018-0118-0 - Barry Simon,
*Tosio Kato’s work on non-relativistic quantum mechanics: part 2*, Bull. Math. Sci. (2018), In Press. - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - Adam Sikora, Lixin Yan, and Xiaohua Yao,
*Spectral multipliers, Bochner-Riesz means and uniform Sobolev inequalities for elliptic operators*, Int. Math. Res. Not. IMRN**10**(2018), 3070–3121. MR**3805196**, DOI 10.1093/imrn/rnw323 - Terence Tao,
*Nonlinear dispersive equations*, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR**2233925**, DOI 10.1090/cbms/106 - Eugene Paul Wigner,
*The collected works of Eugene Paul Wigner. Part A. The scientific papers. Vol. I*, Springer-Verlag, Berlin, 1993. With a preface by Jagdish Mehra and Arthur S. Wightman; With a biographical sketch by Mehra, and annotation by Brian R. Judd and George W. Mackey; Edited by Wightman. MR**1383096** - Kenji Yajima,
*The $W^{k,p}$-continuity of wave operators for Schrödinger operators*, J. Math. Soc. Japan**47**(1995), no. 3, 551–581. MR**1331331**, DOI 10.2969/jmsj/04730551

## Additional Information

**Hongliang Feng**- Affiliation: School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China
- MR Author ID: 1241378
- Email: fenghongliang@aliyun.com
**Avy Soffer**- Affiliation: School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, People’s Republic of China
- Email: soffer@math.rutgers.edu
**Zhao Wu**- Affiliation: School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, People’s Republic of China
- Email: wuzhao218@yahoo.com
**Xiaohua Yao**- Affiliation: Department of Mathematics and Hubei Province Key Laboratory of Mathematical Physics, Central China Normal University, Wuhan, 430079, People’s Republic of China
- MR Author ID: 680187
- Email: yaoxiaohua@mail.ccnu.edu.cn
- Received by editor(s): May 14, 2019
- Received by editor(s) in revised form: September 10, 2019
- Published electronically: January 28, 2020
- Additional Notes: Xiaohua Yao is the corresponding author

The first author was supported by the China Postdoctoral Science Fundation, Grant No. 2019M653135

The second author was partially supported by NSFC grant No. 11671163 and NSF grant DMS-1600749

The fourth author was partially supported by NSFC (No. 11771165) and the program for Changjiang Scholars and Innovative Research Team in University (IRT13066) - © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 2805-2859 - MSC (2010): Primary 34E05, 47F05, 81U30
- DOI: https://doi.org/10.1090/tran/8010
- MathSciNet review: 4069234