A sub-functor for Ext and Cohen-Macaulay associated graded modules with bounded multiplicity
HTML articles powered by AMS MathViewer
- by Tony J. Puthenpurakal PDF
- Trans. Amer. Math. Soc. 373 (2020), 2567-2589 Request permission
Abstract:
Let $(A,\mathfrak {m})$ be a Cohen-Macaulay local ring and let $\mathrm {CM}(A)$ be the category of maximal Cohen-Macaulay $A$-modules. We construct $T \colon \mathrm {CM}(A)\times \mathrm {CM}(A) \rightarrow \operatorname {mod}(A)$, a subfunctor of $\operatorname {Ext}^1_A(-, -)$ and use it to study properties of associated graded modules over $G(A) = \bigoplus _{n\geq 0} \mathfrak {m}^n/\mathfrak {m}^{n+1}$, the associated graded ring of $A$. As an application we give several examples of complete Cohen-Macaulay local rings $A$ with $G(A)$ Cohen-Macaulay and having distinct indecomposable maximal Cohen-Macaulay modules $M_n$ with $G(M_n)$ Cohen-Macaulay and the set $\{e(M_n)\}$ bounded (here $e(M)$ denotes multiplicity of $M$).References
- Joseph P. Brennan, Jürgen Herzog, and Bernd Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203. MR 947472, DOI 10.7146/math.scand.a-12198
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Ernst Dieterich, Reduction of isolated singularities, Comment. Math. Helv. 62 (1987), no. 4, 654–676. MR 920064, DOI 10.1007/BF02564469
- J. Herzog, B. Ulrich, and J. Backelin, Linear maximal Cohen-Macaulay modules over strict complete intersections, J. Pure Appl. Algebra 71 (1991), no. 2-3, 187–202. MR 1117634, DOI 10.1016/0022-4049(91)90147-T
- Craig Huneke and Graham J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), no. 2, 391–404. MR 1933863, DOI 10.1007/s00208-002-0343-3
- Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, Graduate Studies in Mathematics, vol. 87, American Mathematical Society, Providence, RI, 2007. MR 2355715, DOI 10.1090/gsm/087
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Tony J. Puthenpurakal, Hilbert-coefficients of a Cohen-Macaulay module, J. Algebra 264 (2003), no. 1, 82–97. MR 1980687, DOI 10.1016/S0021-8693(03)00231-X
- Tony J. Puthenpurakal, The Hilbert function of a maximal Cohen-Macaulay module, Math. Z. 251 (2005), no. 3, 551–573. MR 2190344, DOI 10.1007/s00209-005-0822-9
- Tony J. Puthenpurakal, Ratliff-Rush filtration, regularity and depth of higher associated graded modules. I, J. Pure Appl. Algebra 208 (2007), no. 1, 159–176. MR 2269837, DOI 10.1016/j.jpaa.2005.12.004
- Tony J. Puthenpurakal, A function on the set of isomorphism classes in the stable category of maximal Cohen-Macaulay modules over a Gorenstein ring: with applications to liaison theory, Math. Scand. 120 (2017), no. 2, 161–180. MR 3657410, DOI 10.7146/math.scand.a-25728
- Tony J. Puthenpurakal, Growth of Hilbert coefficients of syzygy modules, J. Algebra 482 (2017), 131–158. MR 3646287, DOI 10.1016/j.jalgebra.2017.03.017
- Tony J. Puthenpurakal, Symmetries and connected components of the AR-quiver of a Gorenstein local ring, Algebr. Represent. Theory 22 (2019), no. 5, 1261–1298. MR 4026633, DOI 10.1007/s10468-018-9820-6
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- Yuji Yoshino, Brauer-Thrall type theorem for maximal Cohen-Macaulay modules, J. Math. Soc. Japan 39 (1987), no. 4, 719–739. MR 905636, DOI 10.2969/jmsj/03940719
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937, DOI 10.1017/CBO9780511600685
Additional Information
- Tony J. Puthenpurakal
- Affiliation: Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- MR Author ID: 715327
- Email: tputhen@math.iitb.ac.in
- Received by editor(s): August 21, 2018
- Received by editor(s) in revised form: June 20, 2019, and August 14, 2019
- Published electronically: January 23, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2567-2589
- MSC (2010): Primary 13A30, 13C14; Secondary 13D40, 13D07
- DOI: https://doi.org/10.1090/tran/8012
- MathSciNet review: 4069228