Computation of Kazhdan-Lusztig polynomials and some applications to finite groups
HTML articles powered by AMS MathViewer
- by Frank Lübeck PDF
- Trans. Amer. Math. Soc. 373 (2020), 2331-2347 Request permission
Abstract:
We discuss a practical algorithm to compute parabolic Kazhdan-Lusztig polynomials. As an application we compute Kazhdan-Lusztig polynomials which are needed to evaluate a character formula for reductive groups due to Lusztig.
Some coefficients of these polynomials have interesting interpretations for certain finite groups. We find examples of finite dimensional modules for finite groups with much higher dimensional first cohomology group than in all previously known cases.
Some of these examples lead to the construction of finite groups with many maximal subgroups, contradicting an old conjecture by G. E. Wall.
References
- Henning Haahr Andersen, An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 60 (1986), no. 2, 125–153. MR 840301, DOI 10.1016/S0001-8708(86)80008-1
- H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- Christopher P. Bendel, Brian D. Boe, Christopher M. Drupieski, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, and Caroline B. Wright, Bounding the dimensions of rational cohomology groups, Developments and retrospectives in Lie theory, Dev. Math., vol. 38, Springer, Cham, 2014, pp. 51–69. MR 3308777, DOI 10.1007/978-3-319-09804-3_{2}
- Christopher P. Bendel, Daniel K. Nakano, and Cornelius Pillen, On comparing the cohomology of algebraic groups, finite Chevalley groups and Frobenius kernels, J. Pure Appl. Algebra 163 (2001), no. 2, 119–146. MR 1846657, DOI 10.1016/S0022-4049(01)00024-X
- D. J. Benson, Representations and cohomology. I, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. Basic representation theory of finite groups and associative algebras. MR 1644252
- B. Boe, The maximum length in the restricted region, (unpublished), 1998.
- John N. Bray and Robert A. Wilson, Examples of 3-dimensional 1-cohomology for absolutely irreducible modules of finite simple groups, J. Group Theory 11 (2008), no. 5, 669–673. MR 2446148, DOI 10.1515/JGT.2008.042
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, DOI 10.1016/0021-8693(87)90232-8
- Fokko du Cloux, Computing Kazhdan-Lusztig polynomials for arbitrary Coxeter groups, Experiment. Math. 11 (2002), no. 3, 371–381. MR 1959749, DOI 10.1080/10586458.2002.10504482
- Fokko du Cloux, The Coxeter 3 program, http://math.univ-lyon1.fr/~ducloux/coxeter/coxeter3/, 2005.
- Ben Elias and Geordie Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. (2) 180 (2014), no. 3, 1089–1136. MR 3245013, DOI 10.4007/annals.2014.180.3.6
- Peter Fiebig, An upper bound on the exceptional characteristics for Lusztig’s character formula, J. Reine Angew. Math. 673 (2012), 1–31. MR 2999126, DOI 10.1515/CRELLE.2011.170
- GAP – Groups, Algorithms, and Programming, Version 4.7.6, http://www.gap-system.org, Nov 2014.
- Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175–210. Computational methods in Lie theory (Essen, 1994). MR 1486215, DOI 10.1007/BF01190329
- Robert M. Guralnick, The dimension of the first cohomology group, Representation theory, II (Ottawa, Ont., 1984) Lecture Notes in Math., vol. 1178, Springer, Berlin, 1986, pp. 94–97. MR 842479, DOI 10.1007/BFb0075290
- Robert M. Guralnick and Corneliu Hoffman, The first cohomology group and generation of simple groups, Groups and geometries (Siena, 1996) Trends Math., Birkhäuser, Basel, 1998, pp. 81–89. MR 1644977, DOI 10.1007/bf01214004
- Robert M. Guralnick and Pham Huu Tiep, First cohomology groups of Chevalley groups in cross characteristic, Ann. of Math. (2) 174 (2011), no. 1, 543–559. MR 2811608, DOI 10.4007/annals.2011.174.1.16
- Marcel Herzog and Olaf Manz, On the number of subgroups in finite solvable groups, J. Austral. Math. Soc. Ser. A 58 (1995), no. 1, 134–141. MR 1313892, DOI 10.1017/S1446788700038155
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR 650245
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Martin W. Liebeck, Laszlo Pyber, and Aner Shalev, On a conjecture of G. E. Wall, J. Algebra 317 (2007), no. 1, 184–197. MR 2360145, DOI 10.1016/j.jalgebra.2006.10.047
- George Lusztig, Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 313–317. MR 604598
- Benjamin Newton, On the number of maximal subgroups of a finite solvable group, Arch. Math. (Basel) 96 (2011), no. 6, 501–506. MR 2821467, DOI 10.1007/s00013-011-0252-3
- Alison E. Parker and David I. Stewart, First cohomology groups for finite groups of Lie type in defining characteristic, Bull. Lond. Math. Soc. 46 (2014), no. 2, 227–238. MR 3194742, DOI 10.1112/blms/bdt087
- Leonard L. Scott, Some new examples in 1-cohomology, J. Algebra 260 (2003), no. 1, 416–425. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1976701, DOI 10.1016/S0021-8693(02)00667-1
- Leonard L. Scott and Timothy Sprowl, Computing individual Kazhdan-Lusztig basis elements, J. Symbolic Comput. 73 (2016), 244–249. MR 3385961, DOI 10.1016/j.jsc.2015.05.003
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37–68 (German, with English summary). MR 1445511, DOI 10.1090/S1088-4165-97-00006-X
- Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56. MR 155937, DOI 10.1017/S0027763000011016
- G. E. Wall, Some applications of the Eulerian functions of a finite group, J. Austral. Math. Soc. 2 (1961/1962), 35–59. MR 0125156, DOI 10.1017/S1446788700026367
- Geordie Williamson, Schubert calculus and torsion explosion, J. Amer. Math. Soc. 30 (2017), no. 4, 1023–1046. With a joint appendix with Alex Kontorovich and Peter J. McNamara. MR 3671935, DOI 10.1090/jams/868
Additional Information
- Frank Lübeck
- Affiliation: Lehrstuhl D für Mathematik, RWTH Aachen, Pontdriesch 14/16, D-52064 Aachen, Germany
- MR Author ID: 362381
- Email: frank.luebeck@math.rwth-aachen.de
- Received by editor(s): October 22, 2016
- Received by editor(s) in revised form: August 4, 2017, and March 25, 2019
- Published electronically: January 28, 2020
- Additional Notes: The author acknowledges support from the DFG within the TRR 195
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2331-2347
- MSC (2010): Primary 20F55, 20C08, 20G05, 20G10, 20E28
- DOI: https://doi.org/10.1090/tran/8037
- MathSciNet review: 4069221