Large deviation for additive functionals of symmetric Markov processes
HTML articles powered by AMS MathViewer
- by Zhen-Qing Chen and Kaneharu Tsuchida PDF
- Trans. Amer. Math. Soc. 373 (2020), 2981-3005
Abstract:
In this paper, we establish a large deviation principle for pairs of continuous and purely discontinuous additive functionals of symmetric Borel right processes on Lusin spaces. We also establish compact embedding results for the extended Dirichlet spaces of symmetric Markov processes that possess Green potential kernels.References
- Sergio Albeverio, Philippe Blanchard, and Zhi Ming Ma, Feynman-Kac semigroups in terms of signed smooth measures, Random partial differential equations (Oberwolfach, 1989) Internat. Ser. Numer. Math., vol. 102, Birkhäuser, Basel, 1991, pp. 1–31. MR 1185735, DOI 10.1007/978-3-0348-6413-8_{1}
- Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen, and Moritz Kassmann, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc. 361 (2009), no. 4, 1963–1999. MR 2465826, DOI 10.1090/S0002-9947-08-04544-3
- Ali Ben Amor, Trace inequalities for operators associated to regular Dirichlet forms, Forum Math. 16 (2004), no. 3, 417–429. MR 2050191, DOI 10.1515/form.2004.019
- Ali Ben Amor and Wolfhard Hansen, Continuity of eigenvalues for Schrödinger operators, $L^p$-properties of Kato type integral operators, Math. Ann. 321 (2001), no. 4, 925–953. MR 1872535, DOI 10.1007/s002080100260
- E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287 (English, with French summary). MR 898496
- Zhen-Qing Chen, Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4639–4679. MR 1926893, DOI 10.1090/S0002-9947-02-03059-3
- Zhen-Qing Chen, Analytic characterization of conditional gaugeability for non-local Feynman-Kac transforms, J. Funct. Anal. 202 (2003), no. 1, 226–246. MR 1994771, DOI 10.1016/S0022-1236(02)00096-4
- Zhen-Qing Chen, Uniform integrability of exponential martingales and spectral bounds of non-local Feynman-Kac semigroups, Stochastic analysis and applications to finance, Interdiscip. Math. Sci., vol. 13, World Sci. Publ., Hackensack, NJ, 2012, pp. 55–75. MR 2986841, DOI 10.1142/9789814383585_{0}004
- Zhen-Qing Chen, $L^p$-independence of spectral bounds of generalized non-local Feynman-Kac semigroups, J. Funct. Anal. 262 (2012), no. 9, 4120–4139. MR 2899989, DOI 10.1016/j.jfa.2012.02.011
- Z.-Q. Chen, P. J. Fitzsimmons, M. Takeda, J. Ying, and T.-S. Zhang, Absolute continuity of symmetric Markov processes, Ann. Probab. 32 (2004), no. 3A, 2067–2098. MR 2073186, DOI 10.1214/009117904000000432
- Zhen-Qing Chen and Masatoshi Fukushima, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, vol. 35, Princeton University Press, Princeton, NJ, 2012. MR 2849840
- Zhen-Qing Chen, Panki Kim, and Takashi Kumagai, Weighted Poincaré inequality and heat kernel estimates for finite range jump processes, Math. Ann. 342 (2008), no. 4, 833–883. MR 2443765, DOI 10.1007/s00208-008-0258-8
- Zhen-Qing Chen, Panki Kim, and Takashi Kumagai, On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 7, 1067–1086. MR 2524930, DOI 10.1007/s10114-009-8576-7
- Zhen-Qing Chen, Panki Kim, and Renming Song, Dirichlet heat kernel estimates for rotationally symmetric Lévy processes, Proc. Lond. Math. Soc. (3) 109 (2014), no. 1, 90–120. MR 3237737, DOI 10.1112/plms/pdt068
- Zhen-Qing Chen, Panki Kim, and Renming Song, Dirichlet heat kernel estimates for subordinate Brownian motions with Gaussian components, J. Reine Angew. Math. 711 (2016), 111–138. MR 3456760, DOI 10.1515/crelle-2013-0090
- Zhen-Qing Chen and Takashi Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields 140 (2008), no. 1-2, 277–317. MR 2357678, DOI 10.1007/s00440-007-0070-5
- Zhen Qing Chen, Zhi Ming Ma, and Michael Röckner, Quasi-homeomorphisms of Dirichlet forms, Nagoya Math. J. 136 (1994), 1–15. MR 1309378, DOI 10.1017/S0027763000024934
- Zhen-Qing Chen and Renming Song, Conditional gauge theorem for non-local Feynman-Kac transforms, Probab. Theory Related Fields 125 (2003), no. 1, 45–72. MR 1952456, DOI 10.1007/s004400200219
- Zhen-Qing Chen and Renming Song, Drift transforms and Green function estimates for discontinuous processes, J. Funct. Anal. 201 (2003), no. 1, 262–281. MR 1986161, DOI 10.1016/S0022-1236(03)00087-9
- Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, 2nd ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. MR 1619036, DOI 10.1007/978-1-4612-5320-4
- M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Wiener integrals for large time, Functional integration and its applications (Proc. Internat. Conf., London, 1974) Clarendon Press, Oxford, 1975, pp. 15–33. MR 0486395
- Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
- Sheng Wu He, Jia Gang Wang, and Jia An Yan, Semimartingale theory and stochastic calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, 1992. MR 1219534
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Bruno Remillard, Large deviations estimates for occupation time integrals of Brownian motion, Stochastic models (Ottawa, ON, 1998) CMS Conf. Proc., vol. 26, Amer. Math. Soc., Providence, RI, 2000, pp. 375–398. MR 1765021
- Peter Stollmann and Jürgen Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), no. 2, 109–138. MR 1378151, DOI 10.1007/BF00396775
- Masayoshi Takeda, Asymptotic properties of generalized Feynman-Kac functionals, Potential Anal. 9 (1998), no. 3, 261–291. MR 1666887, DOI 10.1023/A:1008656907265
- Masayoshi Takeda, Conditional gaugeability and subcriticality of generalized Schrödinger operators, J. Funct. Anal. 191 (2002), no. 2, 343–376. MR 1911190, DOI 10.1006/jfan.2001.3864
- Masayoshi Takeda, Large deviation principle for additive functionals of Brownian motion corresponding to Kato measures, Potential Anal. 19 (2003), no. 1, 51–67. MR 1962951, DOI 10.1023/A:1022417815090
- Masayoshi Takeda, $L^p$-independence of spectral bounds of Schrödinger type semigroups, J. Funct. Anal. 252 (2007), no. 2, 550–565. MR 2360927, DOI 10.1016/j.jfa.2007.08.003
- Masayoshi Takeda, Large deviations for additive functionals of symmetric stable processes, J. Theoret. Probab. 21 (2008), no. 2, 336–355. MR 2391248, DOI 10.1007/s10959-007-0111-0
- Masayoshi Takeda, Compactness of symmetric Markov semigroups and boundedness of eigenfunctions, Trans. Amer. Math. Soc. 372 (2019), no. 6, 3905–3920. MR 4009422, DOI 10.1090/tran/7664
- Masayoshi Takeda and Kaneharu Tsuchida, Criticality of generalized Schrödinger operators and differentiability of spectral functions, Stochastic analysis and related topics in Kyoto, Adv. Stud. Pure Math., vol. 41, Math. Soc. Japan, Tokyo, 2004, pp. 333–350. MR 2083718, DOI 10.2969/aspm/04110333
- Masayoshi Takeda and Kaneharu Tsuchida, Differentiability of spectral functions for symmetric $\alpha$-stable processes, Trans. Amer. Math. Soc. 359 (2007), no. 8, 4031–4054. MR 2302522, DOI 10.1090/S0002-9947-07-04149-9
- Masayoshi Takeda and Kaneharu Tsuchida, Large deviations for discontinuous additive functionals of symmetric stable processes, Math. Nachr. 284 (2011), no. 8-9, 1148–1171. MR 2839776, DOI 10.1002/mana.200810843
- Frode Terkelsen, Some minimax theorems, Math. Scand. 31 (1972), 405–413 (1973). MR 325880, DOI 10.7146/math.scand.a-11441
- Kaneharu Tsuchida, Differentiability of spectral functions for relativistic $\alpha$-stable processes with application to large deviations, Potential Anal. 28 (2008), no. 1, 17–33. MR 2366397, DOI 10.1007/s11118-007-9065-1
- Kaneharu Tsuchida, On a sufficient condition for large deviations of additive functionals, Stoch. Dyn. 11 (2011), no. 1, 157–181. MR 2771347, DOI 10.1142/S0219493711003218
- Joachim Weidmann, Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. MR 566954, DOI 10.1007/978-1-4612-6027-1
Additional Information
- Zhen-Qing Chen
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 242576
- ORCID: 0000-0001-7037-4030
- Email: zqchen@uw.edu
- Kaneharu Tsuchida
- Affiliation: National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
- MR Author ID: 743064
- Email: tsuchida@nda.ac.jp
- Received by editor(s): January 28, 2018
- Received by editor(s) in revised form: October 31, 2019
- Published electronically: January 23, 2020
- Additional Notes: The first author’s research was partially supported by Simons Foundation grant 520542
The second author’s research was partially supported by a Grant-in-Aid for Science Research(C) (No. 17K05309), Japan Society for the Promotion of Science - © Copyright 2020 Zhen-Qing Chen and Kaneharu Tsuchida
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2981-3005
- MSC (2010): Primary 60F10, 60J55, 31C25; Secondary 60J25, 60J75
- DOI: https://doi.org/10.1090/tran/8039
- MathSciNet review: 4069239
Dedicated: Dedicated to Professor Masayoshi Takeda on the occasion of his 60th birthday