Wide subcategories of $d$-cluster tilting subcategories
HTML articles powered by AMS MathViewer
- by Martin Herschend, Peter Jørgensen and Laertis Vaso PDF
- Trans. Amer. Math. Soc. 373 (2020), 2281-2309 Request permission
Abstract:
A subcategory of an abelian category is wide if it is closed under sums, summands, kernels, cokernels, and extensions. Wide subcategories provide a significant interface between representation theory and combinatorics.
If $\Phi$ is a finite dimensional algebra, then each functorially finite wide subcategory of $\operatorname {mod}( \Phi )$ is of the form $\phi _{ {\textstyle *}}\big ( \operatorname {mod}( \Gamma ) \big )$ in an essentially unique way, where $\Gamma$ is a finite dimensional algebra and $\Phi \stackrel { \phi }{ \longrightarrow } \Gamma$ is an algebra epimorphism satisfying $\operatorname {Tor}^{ \Phi }_1( \Gamma ,\Gamma ) = 0$.
Let $\mathscr {F} \subseteq \operatorname {mod}( \Phi )$ be a $d$-cluster tilting subcategory as defined by Iyama. Then $\mathscr {F}$ is a $d$-abelian category as defined by Jasso, and we call a subcategory of $\mathscr {F}$ wide if it is closed under sums, summands, $d$-kernels, $d$-cokernels, and $d$-extensions. We generalise the above description of wide subcategories to this setting: Each functorially finite wide subcategory of $\mathscr {F}$ is of the form $\phi _{ {\textstyle *}}( \mathscr {G} )$ in an essentially unique way, where $\Phi \stackrel { \phi }{ \longrightarrow } \Gamma$ is an algebra epimorphism satisfying $\operatorname {Tor}^{ \Phi }_d( \Gamma ,\Gamma ) = 0$, and $\mathscr {G} \subseteq \operatorname {mod}( \Gamma )$ is a $d$-cluster tilting subcategory.
We illustrate the theory by computing the wide subcategories of some $d$-cluster tilting subcategories $\mathscr {F} \subseteq \operatorname {mod}( \Phi )$ over algebras of the form $\Phi = kA_m / (\operatorname {rad} kA_m )^{ \ell }$.
References
- George M. Bergman and Warren Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978), no. 2, 293–337. MR 531320, DOI 10.2140/pjm.1978.79.293
- Kristian Brüning, Thick subcategories of the derived category of a hereditary algebra, Homology Homotopy Appl. 9 (2007), no. 2, 165–176. MR 2366948, DOI 10.4310/HHA.2007.v9.n2.a7
- Lars Winther Christensen, Anders Frankild, and Henrik Holm, On Gorenstein projective, injective and flat dimensions—a functorial description with applications, J. Algebra 302 (2006), no. 1, 231–279. MR 2236602, DOI 10.1016/j.jalgebra.2005.12.007
- Erik Darpö and Osamu Iyama, $n$-representation-finite self-injective algebras, preprint, math.RT/1702.01866v1, 2017.
- Edgar E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. MR 636889, DOI 10.1007/BF02760849
- P. Gabriel and J. A. de la Peña, Quotients of representation-finite algebras, Comm. Algebra 15 (1987), no. 1-2, 279–307. MR 876981, DOI 10.1080/00927878708823421
- Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607, DOI 10.1016/0021-8693(91)90107-J
- Manabu Harada, On semi-simple abelian categories, Osaka Math. J. 7 (1970), 89–95. MR 272867
- Martin Herschend and Osamu Iyama, $n$-representation-finite algebras and twisted fractionally Calabi-Yau algebras, Bull. Lond. Math. Soc. 43 (2011), no. 3, 449–466. MR 2820136, DOI 10.1112/blms/bdq101
- Martin Herschend and Osamu Iyama, Selfinjective quivers with potential and 2-representation-finite algebras, Compos. Math. 147 (2011), no. 6, 1885–1920. MR 2862066, DOI 10.1112/S0010437X11005367
- Colin Ingalls and Hugh Thomas, Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009), no. 6, 1533–1562. MR 2575093, DOI 10.1112/S0010437X09004023
- Osamu Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011), no. 1, 1–61. MR 2735750, DOI 10.1016/j.aim.2010.03.004
- Osamu Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50. MR 2298819, DOI 10.1016/j.aim.2006.06.002
- Osamu Iyama, Rejective subcategories of Artin algebras and orders, preprint, math.RT/0311281v1, 2003.
- Osamu Iyama and Steffen Oppermann, $n$-representation-finite algebras and $n$-APR tilting, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6575–6614. MR 2833569, DOI 10.1090/S0002-9947-2011-05312-2
- Gustavo Jasso, $n$-abelian and $n$-exact categories, Math. Z. 283 (2016), no. 3-4, 703–759. MR 3519980, DOI 10.1007/s00209-016-1619-8
- Gustavo Jasso and Sondre Kvamme, An introduction to higher Auslander-Reiten theory, Bull. Lond. Math. Soc. 51 (2019), no. 1, 1–24. MR 3919557, DOI 10.1112/blms.12204
- Peter Jørgensen, Torsion classes and t-structures in higher homological algebra, Int. Math. Res. Not. IMRN 13 (2016), 3880–3905. MR 3544623, DOI 10.1093/imrn/rnv265
- Henning Krause, Thick subcategories of modules over commutative Noetherian rings (with an appendix by Srikanth Iyengar), Math. Ann. 340 (2008), no. 4, 733–747. MR 2372735, DOI 10.1007/s00208-007-0166-3
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Frederik Marks and Jan Šťovíček, Torsion classes, wide subcategories and localisations, Bull. Lond. Math. Soc. 49 (2017), no. 3, 405–416. MR 3723626, DOI 10.1112/blms.12033
- N. Popescu, Abelian categories with applications to rings and modules, London Mathematical Society Monographs, No. 3, Academic Press, London-New York, 1973. MR 0340375
- A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853, DOI 10.1017/CBO9780511661914
- L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44–76. MR 217114, DOI 10.1016/0021-8693(67)90067-1
- Hans H. Storrer, Epimorphic extensions of non-commutative rings, Comment. Math. Helv. 48 (1973), 72–86. MR 321977, DOI 10.1007/BF02566112
- Laertis Vaso, $n$-cluster tilting subcategories of representation-directed algebras, J. Pure Appl. Algebra 223 (2019), no. 5, 2101–2122. MR 3906542, DOI 10.1016/j.jpaa.2018.07.010
Additional Information
- Martin Herschend
- Affiliation: Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden
- MR Author ID: 771009
- Email: martin.herschend@math.uu.se
- Peter Jørgensen
- Affiliation: School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- Email: peter.jorgensen@ncl.ac.uk
- Laertis Vaso
- Affiliation: Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden
- MR Author ID: 1309760
- Email: laertis.vaso@math.uu.se
- Received by editor(s): August 2, 2017
- Received by editor(s) in revised form: March 7, 2019
- Published electronically: January 23, 2020
- Additional Notes: This work was supported by EPSRC grant EP/P016014/1 “Higher Dimensional Homological Algebra”.
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2281-2309
- MSC (2010): Primary 16G10, 18A20, 18E10
- DOI: https://doi.org/10.1090/tran/8051
- MathSciNet review: 4069219
Dedicated: Dedicated to Idun Reiten on the occasion of her 75th birthday