Multiparameter perturbation theory of matrices and linear operators
HTML articles powered by AMS MathViewer
- by Adam Parusiński and Guillaume Rond PDF
- Trans. Amer. Math. Soc. 373 (2020), 2933-2948 Request permission
Abstract:
We show that a normal matrix $A$ with coefficients in $\mathbb {C}[[X]]$, $X=(X_1, \ldots , X_n)$, can be diagonalized, provided the discriminant $\Delta _A$ of its characteristic polynomial is a monomial times a unit. The proof is an adaptation of our proof of the Abhyankar-Jung Theorem. As a corollary we obtain the singular value decomposition for an arbitrary matrix $A$ with coefficient in $\mathbb {C}[[X]]$ under a similar assumption on $\Delta _{AA^*}$ and $\Delta _{A^*A}$.
We also show real versions of these results, i.e., for coefficients in $\mathbb {R}[[X]]$, and deduce several results on multiparameter perturbation theory for normal matrices with real analytic, quasi-analytic, or Nash coefficients.
References
- Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, 2nd ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006. MR 2248869, DOI 10.1007/3-540-33099-2
- Edward Bierstone and Pierre D. Milman, Uniformization of analytic spaces, J. Amer. Math. Soc. 2 (1989), no. 4, 801–836. MR 1001853, DOI 10.1090/S0894-0347-1989-1001853-2
- Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI 10.1007/s002220050141
- Edward Bierstone and Pierre D. Milman, Resolution of singularities in Denjoy-Carleman classes, Selecta Math. (N.S.) 10 (2004), no. 1, 1–28. MR 2061220, DOI 10.1007/s00029-004-0327-0
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- P. M. Cohn, Correction to: “Puiseux’s theorem revisited” [J. Pure Appl. Algebra 31 (1984), no. 1-3, 1–4; MR0738199 (85d:14035)], J. Pure Appl. Algebra 52 (1988), no. 1-2, 197–198. MR 949350, DOI 10.1016/0022-4049(88)90147-8
- George E. Forsythe and Cleve B. Moler, Computer solution of linear algebraic systems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219223
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- Vincent Grandjean, Re-parameterizing and reducing families of normal operators, Israel J. Math. 230 (2019), no. 2, 715–744. MR 3940433, DOI 10.1007/s11856-019-1834-1
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Krzysztof Kurdyka and Laurentiu Paunescu, Hyperbolic polynomials and multiparameter real-analytic perturbation theory, Duke Math. J. 141 (2008), no. 1, 123–149. MR 2372149, DOI 10.1215/S0012-7094-08-14113-4
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Adam Parusiński and Laurenţiu Păunescu, Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity, Adv. Math. 309 (2017), 254–305. MR 3607278, DOI 10.1016/j.aim.2017.01.016
- Adam Parusiński and Guillaume Rond, The Abhyankar-Jung theorem, J. Algebra 365 (2012), 29–41. MR 2928451, DOI 10.1016/j.jalgebra.2012.05.003
- Armin Rainer, Quasianalytic multiparameter perturbation of polynomials and normal matrices, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4945–4977. MR 2806697, DOI 10.1090/S0002-9947-2011-05311-0
- Armin Rainer, Perturbation theory for normal operators, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5545–5577. MR 3074382, DOI 10.1090/S0002-9947-2013-05854-0
- A. Rainer, Perturbation of hyperbolic polynomials and related lifting problems, available at http://www.mat.univie.ac.at/$\sim$armin/publ/roots-lifts.ps .
- Franz Rellich, Störungstheorie der Spektralzerlegung, Math. Ann. 113 (1937), no. 1, 600–619 (German). MR 1513109, DOI 10.1007/BF01571652
- Franz Rellich, Störungstheorie der Spektralzerlegung. V, Math. Ann. 118 (1942), 462–484 (German). MR 10791, DOI 10.1007/BF01487382
- Franz Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Assisted by J. Berkowitz; With a preface by Jacob T. Schwartz. MR 0240668
- Jean-Jacques Risler, Sur l’anneau des fonctions de Nash globales, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 365–378 (French). MR 393031, DOI 10.24033/asens.1293
- M.-F. Roy, Subdiscriminant of symmetric matrices are sums of squares, Mathematics, Algorithms, Proofs, volume 05021 of Dagstuhl Seminar Proceedings, Internationales Begegnungs und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.
- M.-Angeles Zurro, The Abhyankar-Jung theorem revisited, J. Pure Appl. Algebra 90 (1993), no. 3, 275–282. MR 1255715, DOI 10.1016/0022-4049(93)90045-U
- Hassler Whitney, Complex analytic varieties, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972. MR 0387634
Additional Information
- Adam Parusiński
- Affiliation: Université Côte d’Azur, Université Nice Sophia Antipolis, CNRS, LJAD, Parc Valrose, 06108 Nice Cedex 02, France
- Email: adam.parusinski@unice.fr
- Guillaume Rond
- Affiliation: LASOL, UMI2001, UNAM, Aix Marseille Univ, Mexico
- MR Author ID: 759916
- Email: guillaume.rond@univ-amu.fr
- Received by editor(s): June 18, 2019
- Received by editor(s) in revised form: September 24, 2019
- Published electronically: January 23, 2020
- Additional Notes: The authors’ research was supported in part by ANR project LISA (ANR-17-CE40-0023-03)
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2933-2948
- MSC (2010): Primary 47A55; Secondary 13F25, 14P20, 15A18, 26E10
- DOI: https://doi.org/10.1090/tran/8061
- MathSciNet review: 4069237