On relative entropy and global index
HTML articles powered by AMS MathViewer
- by Feng Xu PDF
- Trans. Amer. Math. Soc. 373 (2020), 3515-3539 Request permission
Abstract:
Certain duality of relative entropy can fail for a chiral conformal net with nontrivial representations. In this paper we quantify such statement by defining a quantity which measures the failure of such duality, and identify this quantity with relative entropy and global index associated with multi-interval subfactors for a large class of conformal nets. As a consequence of such new formulation we show that the duality holds for a large class of conformal nets if and only if they are holomorphic. The same argument also applies to CFT in two dimensions. In particular we show that the duality holds for a large class of CFT in two dimensions if and only if they are modular invariant. We also obtain various limiting properties of relative entropies which naturally follow from our formula.References
- Huzihiro Araki, Relative entropy for states of von Neumann algebras. II, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 1, 173–192. MR 0454656, DOI 10.2977/prims/1195190105
- Sebastiano Carpi, Yasuyuki Kawahigashi, and Roberto Longo, Structure and classification of superconformal nets, Ann. Henri Poincaré 9 (2008), no. 6, 1069–1121. MR 2453256, DOI 10.1007/s00023-008-0381-9
- H. Casini and M. Huerta, A finite entanglement entropy and the $c$-theorem, Phys. Lett. B 600 (2004), no. 1-2, 142–150. MR 2094769, DOI 10.1016/j.physletb.2004.08.072
- H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009), no. 50, 504007, 45. MR 2566334, DOI 10.1088/1751-8113/42/50/504007
- A. Connes, On the spatial theory of von Neumann algebras, J. Functional Analysis 35 (1980), no. 2, 153–164. MR 561983, DOI 10.1016/0022-1236(80)90002-6
- Chongying Dong and Feng Xu, Conformal nets associated with lattices and their orbifolds, Adv. Math. 206 (2006), no. 1, 279–306. MR 2261756, DOI 10.1016/j.aim.2005.08.009
- Fabrizio Gabbiani and Jürg Fröhlich, Operator algebras and conformal field theory, Comm. Math. Phys. 155 (1993), no. 3, 569–640. MR 1231644
- Stefan Hollands, Relative entropy close to the edge, Ann. Henri Poincaré 20 (2019), no. 7, 2353–2375. MR 3962848, DOI 10.1007/s00023-019-00805-3
- S. Hollands and K. Sanders, Entanglement measures and their properties in quantum field theory, arXiv:1702.04924.
- Yasuyuki Kawahigashi and Roberto Longo, Classification of two-dimensional local conformal nets with $c<1$ and 2-cohomology vanishing for tensor categories, Comm. Math. Phys. 244 (2004), no. 1, 63–97. MR 2029950, DOI 10.1007/s00220-003-0979-1
- Yasuyuki Kawahigashi, Roberto Longo, and Michael Müger, Multi-interval subfactors and modularity of representations in conformal field theory, Comm. Math. Phys. 219 (2001), no. 3, 631–669. MR 1838752, DOI 10.1007/PL00005565
- Oliver D. King, A mass formula for unimodular lattices with no roots, Math. Comp. 72 (2003), no. 242, 839–863. MR 1954971, DOI 10.1090/S0025-5718-02-01455-2
- Hideki Kosaki, Extension of Jones’ theory on index to arbitrary factors, J. Funct. Anal. 66 (1986), no. 1, 123–140. MR 829381, DOI 10.1016/0022-1236(86)90085-6
- Hideki Kosaki and Roberto Longo, A remark on the minimal index of subfactors, J. Funct. Anal. 107 (1992), no. 2, 458–470. MR 1172035, DOI 10.1016/0022-1236(92)90118-3
- V. Toledano Laredo, Fusion of positive energy representations of $LSPin_{2n},$ math/OA 0409044.
- Roberto Longo, Conformal subnets and intermediate subfactors, Comm. Math. Phys. 237 (2003), no. 1-2, 7–30. Dedicated to Rudolf Haag. MR 2007172, DOI 10.1007/s00220-003-0814-8
- Roberto Longo and Feng Xu, Topological sectors and a dichotomy in conformal field theory, Comm. Math. Phys. 251 (2004), no. 2, 321–364. MR 2100058, DOI 10.1007/s00220-004-1063-1
- Roberto Longo, On Landauer’s principle and bound for infinite systems, Comm. Math. Phys. 363 (2018), no. 2, 531–560. MR 3851822, DOI 10.1007/s00220-018-3116-x
- R. Longo, Entropy distribution of localised states, arXiv:1809.03358, Comm. Math. Phys. (in press).
- Roberto Longo and Feng Xu, Comment on the Bekenstein bound, J. Geom. Phys. 130 (2018), 113–120. MR 3807121, DOI 10.1016/j.geomphys.2018.03.004
- Roberto Longo and Feng Xu, Relative entropy in CFT, Adv. Math. 337 (2018), 139–170. MR 3853047, DOI 10.1016/j.aim.2018.08.015
- Vincenzo Morinelli, Yoh Tanimoto, and Mihály Weiner, Conformal covariance and the split property, Comm. Math. Phys. 357 (2018), no. 1, 379–406. MR 3764574, DOI 10.1007/s00220-017-2961-3
- Michael Müger, On superselection theory of quantum fields in low dimensions, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, pp. 496–503. MR 2730815, DOI 10.1142/9789814304634_{0}041
- Heide Narnhofer, Entanglement, split and nuclearity in quantum field theory, Rep. Math. Phys. 50 (2002), no. 1, 111–123. MR 1939945, DOI 10.1016/S0034-4877(02)80048-9
- Masanori Ohya and Dénes Petz, Quantum entropy and its use, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1993. MR 1230389, DOI 10.1007/978-3-642-57997-4
- Yul Otani and Yoh Tanimoto, Toward entanglement entropy with UV-cutoff in conformal nets, Ann. Henri Poincaré 19 (2018), no. 6, 1817–1842. MR 3806444, DOI 10.1007/s00023-018-0671-9
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- K.-H. Rehren, Chiral observables and modular invariants, Comm. Math. Phys. 208 (2000), no. 3, 689–712. MR 1736332, DOI 10.1007/PL00005523
- M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006, DOI 10.1007/978-3-662-10451-4
- Antony Wassermann, Operator algebras and conformal field theory. III. Fusion of positive energy representations of $\textrm {LSU}(N)$ using bounded operators, Invent. Math. 133 (1998), no. 3, 467–538. MR 1645078, DOI 10.1007/s002220050253
- E. Witten, Notes on some entanglement properties of Quantum Field Theory, arXiv:1803.04993.
- F. Xu, Some Results On Relative Entropy in Quantum Field Theory, arxiv. 181010642, to appear in Comm. Math. Phys.
- Feng Xu, Jones-Wassermann subfactors for disconnected intervals, Commun. Contemp. Math. 2 (2000), no. 3, 307–347. MR 1776984, DOI 10.1142/S0219199700000153
Additional Information
- Feng Xu
- Affiliation: Department of Mathematics, University of California at Riverside, Riverside, California 92521
- MR Author ID: 358033
- Email: xufeng@math.ucr.edu
- Received by editor(s): January 4, 2019
- Received by editor(s) in revised form: May 30, 2019, and September 2, 2019
- Published electronically: February 19, 2020
- Additional Notes: This work was supported in part by NSF grant DMS-1764157
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 3515-3539
- MSC (2010): Primary 46L37; Secondary 81R15
- DOI: https://doi.org/10.1090/tran/7989
- MathSciNet review: 4082246