A Toeplitz-type operator on Hardy spaces in the unit ball
Authors:
Jordi Pau and Antti Perälä
Journal:
Trans. Amer. Math. Soc. 373 (2020), 3031-3062
MSC (2010):
Primary 47B35, 30H10
DOI:
https://doi.org/10.1090/tran/8053
Published electronically:
February 19, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study a Toeplitz-type operator between the holomorphic Hardy spaces
and
of the unit ball. Here the generating symbol
is assumed to be a positive Borel measure. This kind of operator is related to many classical mappings acting on Hardy spaces, such as composition operators, the Volterra-type integration operators, and Carleson embeddings. We completely characterize the boundedness and compactness of
for the full range
; and also describe the membership in the Schatten classes of
. In the last section of the paper, we demonstrate the usefulness of
through applications.
- [1] Patrick Ahern and Joaquim Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of 𝐶ⁿ, Rev. Mat. Iberoamericana 4 (1988), no. 1, 123–153. MR 1009122, https://doi.org/10.4171/RMI/66
- [2] Alexandru Aleman and Aristomenis G. Siskakis, An integral operator on 𝐻^{𝑝}, Complex Variables Theory Appl. 28 (1995), no. 2, 149–158. MR 1700079, https://doi.org/10.1080/17476939508814844
- [3] Miloš Arsenović, Embedding derivatives of ℳ-harmonic functions into ℒ^{𝓅}-spaces, Rocky Mountain J. Math. 29 (1999), no. 1, 61–76. MR 1687655, https://doi.org/10.1216/rmjm/1181071679
- [4] Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. MR 117349, https://doi.org/10.2307/2372840
- [5] Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, https://doi.org/10.2307/1970375
- [6] Manuel D. Contreras and Alfredo G. Hernández-Díaz, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263 (2001), no. 1, 224–233. MR 1864316, https://doi.org/10.1006/jmaa.2001.7610
- [7] Manuel D. Contreras and Alfredo G. Hernández-Díaz, Weighted composition operators between different Hardy spaces, Integral Equations Operator Theory 46 (2003), no. 2, 165–188. MR 1983019, https://doi.org/10.1007/s000200300023
- [8] Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- [9] Peter L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143–146. MR 241650, https://doi.org/10.1090/S0002-9904-1969-12181-6
- [10] Peter L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- [11] C. Fefferman and E. M. Stein, 𝐻^{𝑝} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, https://doi.org/10.1007/BF02392215
- [12] Lars Hörmander, 𝐿^{𝑝} estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65–78. MR 234002, https://doi.org/10.7146/math.scand.a-10821
- [13] Miroljub Jevtić, Embedding derivatives of ℳ-harmonic Hardy spaces ℋ^{𝓅} into Lebesgue spaces, 0<𝓅<2, Rocky Mountain J. Math. 26 (1996), no. 1, 175–187. MR 1386158, https://doi.org/10.1216/rmjm/1181072109
- [14] N. J. Kalton, Convexity, type and the three space problem, Studia Math. 69 (1980/81), no. 3, 247–287. MR 647141, https://doi.org/10.4064/sm-69-3-247-287
- [15] Daniel H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), no. 2, 345–368. MR 899655, https://doi.org/10.1016/0022-1236(87)90072-3
- [16] Daniel H. Luecking, Embedding derivatives of Hardy spaces into Lebesgue spaces, Proc. London Math. Soc. (3) 63 (1991), no. 3, 595–619. MR 1127151, https://doi.org/10.1112/plms/s3-63.3.595
- [17] Daniel H. Luecking, Embedding theorems for spaces of analytic functions via Khinchine’s inequality, Michigan Math. J. 40 (1993), no. 2, 333–358. MR 1226835, https://doi.org/10.1307/mmj/1029004756
- [18] Daniel H. Luecking and Ke He Zhu, Composition operators belonging to the Schatten ideals, Amer. J. Math. 114 (1992), no. 5, 1127–1145. MR 1183534, https://doi.org/10.2307/2374892
- [19] J. M. Ortega and J. Fàbrega, Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 111–137 (English, with English and French summaries). MR 1385513
- [20] Jordi Pau, Integration operators between Hardy spaces on the unit ball of ℂⁿ, J. Funct. Anal. 270 (2016), no. 1, 134–176. MR 3419758, https://doi.org/10.1016/j.jfa.2015.10.009
- [21] Jordi Pau and José Ángel Peláez, Schatten classes of integration operators on Dirichlet spaces, J. Anal. Math. 120 (2013), 255–289. MR 3095154, https://doi.org/10.1007/s11854-013-0020-3
- [22] Miroslav Pavlović, On the Littlewood-Paley 𝑔-function and Calderón’s area theorem, Expo. Math. 31 (2013), no. 2, 169–195. MR 3057123, https://doi.org/10.1016/j.exmath.2013.01.006
- [23] José Ángel Peláez, Compact embedding derivatives of Hardy spaces into Lebesgue spaces, Proc. Amer. Math. Soc. 144 (2016), no. 3, 1095–1107. MR 3447663, https://doi.org/10.1090/S0002-9939-2015-12763-3
- [24] Walter Rudin, Function theory in the unit ball of 𝐶ⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- [25] M. P. Smith, Testing Schatten class Hankel operators and Carleson embeddings via reproducing kernels, J. London Math. Soc. (2) 71 (2005), no. 1, 172–186. MR 2108255, https://doi.org/10.1112/S0024610704005988
- [26] Georgios Stylogiannis, Weighted composition operators on Hardy spaces, Acta Sci. Math. (Szeged) 78 (2012), no. 1-2, 213–239. MR 3100404
- [27] Chao Zhang and Guang Fu Cao, The role of BMOA in the boundedness of weighted composition operators on the unit ball, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 2, 323–330. MR 3150243, https://doi.org/10.1007/s10114-013-1742-y
- [28] Ruhan Zhao and Kehe Zhu, Theory of Bergman spaces in the unit ball of ℂⁿ, Mém. Soc. Math. Fr. (N.S.) 115 (2008), vi+103 pp. (2009) (English, with English and French summaries). MR 2537698
- [29] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155
- [30] Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536
- [31] Kehe Zhu, Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball, New York J. Math. 13 (2007), 299–316. MR 2357717
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47B35, 30H10
Retrieve articles in all journals with MSC (2010): 47B35, 30H10
Additional Information
Jordi Pau
Affiliation:
Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain
Email:
jordi.pau@ub.edu
Antti Perälä
Affiliation:
Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Gothenburg SE-412 96, Sweden
Email:
antti.perala@gu.se
DOI:
https://doi.org/10.1090/tran/8053
Keywords:
Hardy spaces,
Toeplitz operators,
tent spaces,
Schatten classes
Received by editor(s):
May 11, 2018
Received by editor(s) in revised form:
February 15, 2019
Published electronically:
February 19, 2020
Additional Notes:
The first author was partially supported by DGICYT grant MTM2014-51834-P (MCyT/MEC) and the grant 2017SGR358 (Generalitat de Catalunya). The second author acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445). Both authors were also supported by the grant MTM2017-83499-P (Ministerio de Educación y Ciencia).
Article copyright:
© Copyright 2020
American Mathematical Society