Vandermondes in superspace
HTML articles powered by AMS MathViewer
- by Brendon Rhoades and Andrew Timothy Wilson PDF
- Trans. Amer. Math. Soc. 373 (2020), 4483-4516 Request permission
Abstract:
Superspace of rank $n$ is a $\mathbb {Q}$-algebra with $n$ commuting generators $x_1, \dots , x_n$ and $n$ anticommuting generators $\theta _1, \dots , \theta _n$. We present an extension of the Vandermonde determinant to superspace which depends on a sequence $\mathbf {a} = (a_1, \dots , a_r)$ of nonnegative integers of length $r \leq n$. We use superspace Vandermondes to construct graded representations of the symmetric group. This construction recovers hook-shaped Tanisaki quotients, the coinvariant ring for the Delta Conjecture constructed by Haglund, Rhoades, and Shimozono, and a superspace quotient related to positroids and Chern plethysm constructed by Billey, Rhoades, and Tewari. We define a notion of partial differentiation with respect to anticommuting variables to construct doubly graded modules from superspace Vandermondes. These doubly graded modules carry a natural ring structure which satisfies a 2-dimensional version of Poincaré duality. The application of polarization operators gives rise to other bigraded modules which give a conjectural module for the symmetric function $\Delta ’_{e_{k-1}} e_n$ appearing in the Delta Conjecture of Haglund, Remmel, and Wilson.References
- François Bergeron, Algebraic combinatorics and coinvariant spaces, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2009. MR 2538310, DOI 10.1201/b10583
- François Bergeron, Multivariate diagonal coinvariant spaces for complex reflection groups, Adv. Math. 239 (2013), 97–108. MR 3045143, DOI 10.1016/j.aim.2013.02.013
- N. Bergeron and A. M. Garsia, On certain spaces of harmonic polynomials, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991) Contemp. Math., vol. 138, Amer. Math. Soc., Providence, RI, 1992, pp. 51–86. MR 1199120, DOI 10.1090/conm/138/1199120
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- S. Billey, B. Rhoades, and V. Tewari, Boolean product polynomials, Schur positivity, and Chern plethysm. Preprint, 2019. arXiv:1902.11165.
- Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, DOI 10.2307/2372597
- Patrick Desrosiers, Luc Lapointe, and Pierre Mathieu, Classical symmetric functions in superspace, J. Algebraic Combin. 24 (2006), no. 2, 209–238. MR 2259017, DOI 10.1007/s10801-006-0020-9
- Adriano Garsia, Jim Haglund, Jeffrey B. Remmel, and Meesue Yoo, A proof of the delta conjecture when $q=0$, Ann. Comb. 23 (2019), no. 2, 317–333. MR 3962860, DOI 10.1007/s00026-019-00426-x
- A. M. Garsia and C. Procesi, On certain graded $S_n$-modules and the $q$-Kostka polynomials, Adv. Math. 94 (1992), no. 1, 82–138. MR 1168926, DOI 10.1016/0001-8708(92)90034-I
- J. Haglund, J. B. Remmel, and A. T. Wilson, The delta conjecture, Trans. Amer. Math. Soc. 370 (2018), no. 6, 4029–4057. MR 3811519, DOI 10.1090/tran/7096
- James Haglund, Brendon Rhoades, and Mark Shimozono, Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math. 329 (2018), 851–915. MR 3783430, DOI 10.1016/j.aim.2018.01.028
- James Haglund, Brendon Rhoades, and Mark Shimozono, Hall-Littlewood expansions of Schur delta operators at $t=0$, Sém. Lothar. Combin. 79 ([2018–2020]), Art. B79c, 20. MR 3932967
- Toshiaki Maeno, Yasuhide Numata, and Akihito Wachi, Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups, Algebr. Represent. Theory 14 (2011), no. 4, 625–638. MR 2817446, DOI 10.1007/s10468-010-9207-9
- Brendan Pawlowski and Brendon Rhoades, A flag variety for the delta conjecture, Trans. Amer. Math. Soc. 372 (2019), no. 11, 8195–8248. MR 4029695, DOI 10.1090/tran/7918
- Michael E. Peskin and Daniel V. Schroeder, An introduction to quantum field theory, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1995. Edited and with a foreword by David Pines. MR 1402248
- Brendon Rhoades, Ordered set partition statistics and the delta conjecture, J. Combin. Theory Ser. A 154 (2018), 172–217. MR 3718065, DOI 10.1016/j.jcta.2017.08.017
- Brendon Rhoades and Andrew Timothy Wilson, Tail positive words and generalized coinvariant algebras, Electron. J. Combin. 24 (2017), no. 3, Paper No. 3.21, 29. MR 3691538, DOI 10.37236/6970
- Brendon Rhoades and Andrew Timothy Wilson, Line configurations and $r$-Stirling partitions, J. Comb. 10 (2019), no. 3, 411–431. MR 3960509, DOI 10.4310/JOC.2019.v10.n3.a1
- Louis Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57–64. MR 154929, DOI 10.1017/S0027763000011028
- Toshiyuki Tanisaki, Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2) 34 (1982), no. 4, 575–585. MR 685425, DOI 10.2748/tmj/1178229158
- Andrew Timothy Wilson, An extension of MacMahon’s equidistribution theorem to ordered multiset partitions, Electron. J. Combin. 23 (2016), no. 1, Paper 1.5, 21. MR 3484710
- M. Zabrocki, A module for the Delta conjecture, Preprint, 2019. arXiv:1902.08966.
Additional Information
- Brendon Rhoades
- Affiliation: Department of Mathematics, University of California San Diego, La Jolla, California 92093
- MR Author ID: 779261
- Email: bprhoades@ucsd.edu
- Andrew Timothy Wilson
- Affiliation: Department of Mathematics, Portland State University, Portland, Oregon 97201
- MR Author ID: 1053108
- Email: andwils2@pdx.edu
- Received by editor(s): June 24, 2019
- Received by editor(s) in revised form: July 14, 2019, and November 25, 2019
- Published electronically: March 16, 2020
- Additional Notes: The first author was supported in part by NSF Grant DMS-1500838.
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 4483-4516
- MSC (2010): Primary 05E10; Secondary 05E05
- DOI: https://doi.org/10.1090/tran/8066
- MathSciNet review: 4105531