Wall-crossing and recursion formulae for tropical Jucys covers
HTML articles powered by AMS MathViewer
- by Marvin Anas Hahn and Danilo Lewański PDF
- Trans. Amer. Math. Soc. 373 (2020), 4685-4711
Abstract:
Hurwitz numbers enumerate branched genus $g$ covers of the Riemann sphere with fixed ramification data or equivalently certain factorisations of permutations. Double Hurwitz numbers are an important class of Hurwitz numbers, obtained by considering ramification data with a specific structure. They exhibit many fascinating properties, such as a beautiful piecewise polynomial structure, which has been well-studied in the last 15 years. In particular, using methods from tropical geometry, it was possible to derive wall-crossing formulae for double Hurwitz numbers in arbitrary genus. Further, double Hurwitz numbers satisfy an explicit recursive formula. In recent years several related enumerations have appeared in the literature. In this work, we focus on two of those invariants, so-called monotone and strictly monotone double Hurwitz numbers. Monotone double Hurwitz numbers originate from random matrix theory, as they appear as the coefficients in the asymptotic expansion of the famous Harish-Chandra–Itzykson–Zuber integral. Strictly monotone double Hurwitz numbers are known to be equivalent to an enumeration of Grothendieck dessins d’enfants. These new invariants share many structural properties with double Hurwitz numbers, such as piecewise polynomiality. In this work, we enlarge upon this study and derive new explicit wall-crossing and recursive formulae for monotone and strictly monotone double Hurwitz numbers. The key ingredient is a new interpretation of monotone and strictly monotone double Hurwitz numbers in terms of tropical covers, which was recently derived by the authors. An interesting observation is the fact that monotone and strictly monotone double Hurwitz numbers satisfy wall-crossing formulae, which are almost identical to the classical double Hurwitz numbers.References
- Dan Abramovich, Lucia Caporaso, and Sam Payne, The tropicalization of the moduli space of curves, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 765–809 (English, with English and French summaries). MR 3377065, DOI 10.24033/asens.2258
- A. Alexandrov, D. Lewanski, and S. Shadrin, Ramifications of Hurwitz theory, KP integrability and quantum curves, J. High Energy Phys. 5 (2016), 124, front matter+30. MR 3521843, DOI 10.1007/JHEP05(2016)124
- Omid Amini, Matthew Baker, Erwan Brugallé, and Joseph Rabinoff, Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta, Res. Math. Sci. 2 (2015), Art. 7, 67. MR 3375652, DOI 10.1186/s40687-014-0019-0
- Federico Ardila and Erwan Brugallé, The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial, Int. Math. Res. Not. IMRN 2 (2017), 614–641. MR 3658147, DOI 10.1093/imrn/rnv379
- Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN 15 (2009), 2914–2955. MR 2525845, DOI 10.1093/imrn/rnp037
- Benoît Bertrand, Erwan Brugallé, and Grigory Mikhalkin, Tropical open Hurwitz numbers, Rend. Semin. Mat. Univ. Padova 125 (2011), 157–171. MR 2866125, DOI 10.4171/RSMUP/125-10
- Gaëtan Borot, Bertrand Eynard, Motohico Mulase, and Brad Safnuk, A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011), no. 2, 522–540. MR 2746135, DOI 10.1016/j.geomphys.2010.10.017
- Vincent Bouchard and Marcos Mariño, Hurwitz numbers, matrix models and enumerative geometry, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 263–283. MR 2483754, DOI 10.1090/pspum/078/2483754
- Silvia Brannetti, Margarida Melo, and Filippo Viviani, On the tropical Torelli map, Adv. Math. 226 (2011), no. 3, 2546–2586. MR 2739784, DOI 10.1016/j.aim.2010.09.011
- Lucia Caporaso, Gonality of algebraic curves and graphs, Algebraic and complex geometry, Springer Proc. Math. Stat., vol. 71, Springer, Cham, 2014, pp. 77–108. MR 3278571, DOI 10.1007/978-3-319-05404-9_{4}
- Lucia Caporaso, Algebraic and tropical curves: comparing their moduli spaces, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 119–160. MR 3184163
- Renzo Cavalieri, Paul Johnson, and Hannah Markwig, Tropical Hurwitz numbers, J. Algebraic Combin. 32 (2010), no. 2, 241–265. MR 2661417, DOI 10.1007/s10801-009-0213-0
- Renzo Cavalieri, Paul Johnson, and Hannah Markwig, Wall crossings for double Hurwitz numbers, Adv. Math. 228 (2011), no. 4, 1894–1937. MR 2836109, DOI 10.1016/j.aim.2011.06.021
- Renzo Cavalieri, Paul Johnson, Hannah Markwig, and Dhruv Ranganathan, A graphical interface for the Gromov-Witten theory of curves, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 139–167. MR 3821170
- Renzo Cavalieri, Hannah Markwig, and Dhruv Ranganathan, Tropicalizing the space of admissible covers, Math. Ann. 364 (2016), no. 3-4, 1275–1313. MR 3466867, DOI 10.1007/s00208-015-1250-8
- Leonid Chekhov and Bertrand Eynard, Hermitian matrix model free energy: Feynman graph technique for all genera, J. High Energy Phys. 3 (2006), 014, 18. MR 2222762, DOI 10.1088/1126-6708/2006/03/014
- Norman Do, Alastair Dyer, and Daniel V. Mathews, Topological recursion and a quantum curve for monotone Hurwitz numbers, J. Geom. Phys. 120 (2017), 19–36. MR 3712146, DOI 10.1016/j.geomphys.2017.05.014
- N. Do and M. Karev, Monotone orbifold Hurwitz numbers, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 446 (2016), no. Kombinatorika i Teoriya Grafov. V, 40–69; English transl., J. Math. Sci. (N.Y.) 226 (2017), no. 5, 568–587. MR 3520422, DOI 10.1007/s10958-017-3551-9
- Norman Do and David Manescu, Quantum curves for the enumeration of ribbon graphs and hypermaps, Commun. Number Theory Phys. 8 (2014), no. 4, 677–701. MR 3318387, DOI 10.4310/CNTP.2014.v8.n4.a2
- Olivia Dumitrescu, Motohico Mulase, Brad Safnuk, and Adam Sorkin, The spectral curve of the Eynard-Orantin recursion via the Laplace transform, Algebraic and geometric aspects of integrable systems and random matrices, Contemp. Math., vol. 593, Amer. Math. Soc., Providence, RI, 2013, pp. 263–315. MR 3087960, DOI 10.1090/conm/593/11867
- P. Dunin-Barkowski, M. Kazarian, N. Orantin, S. Shadrin, and L. Spitz, Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the ELSV formula, Adv. Math. 279 (2015), 67–103. MR 3345179, DOI 10.1016/j.aim.2015.03.016
- P. Dunin-Barkowski, R. Kramer, A. Popolitov, and S. Shadrin, Cut-and-join equation for monotone Hurwitz numbers revisited, J. Geom. Phys. 137 (2019), 1–6. MR 3892091, DOI 10.1016/j.geomphys.2018.11.010
- Petr Dunin-Barkowski, Nicolas Orantin, Aleksandr Popolitov, and Sergey Shadrin, Combinatorics of loop equations for branched covers of sphere, Int. Math. Res. Not. IMRN 18 (2018), 5638–5662. MR 3862116, DOI 10.1093/imrn/rnx047
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), no. 2, 297–327. MR 1864018, DOI 10.1007/s002220100164
- B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014), no. 3, 541–588. MR 3282995, DOI 10.4310/CNTP.2014.v8.n3.a4
- Bertrand Eynard, Motohico Mulase, and Bradley Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011), no. 2, 629–670. MR 2849645, DOI 10.2977/PRIMS/47
- B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), no. 2, 347–452. MR 2346575, DOI 10.4310/CNTP.2007.v1.n2.a4
- I. P. Goulden, D. M. Jackson, and R. Vakil, Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005), no. 1, 43–92. MR 2183250, DOI 10.1016/j.aim.2005.01.008
- I. P. Goulden, Mathieu Guay-Paquet, and Jonathan Novak, Monotone Hurwitz numbers in genus zero, Canad. J. Math. 65 (2013), no. 5, 1020–1042. MR 3095005, DOI 10.4153/CJM-2012-038-0
- I. P. Goulden, Mathieu Guay-Paquet, and Jonathan Novak, Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal 21 (2014), no. 1, 71–89 (English, with English and French summaries). MR 3248222, DOI 10.5802/ambp.336
- I. P. Goulden, Mathieu Guay-Paquet, and Jonathan Novak, Toda equations and piecewise polynomiality for mixed double Hurwitz numbers, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 040, 10. MR 3488530, DOI 10.3842/SIGMA.2016.040
- Marvin Anas Hahn, A monodromy graph approach to the piecewise polynomiality of simple, monotone and Grothendieck dessins d’enfants double Hurwitz numbers, Graphs Combin. 35 (2019), no. 3, 729–766. MR 3969024, DOI 10.1007/s00373-019-02030-5
- Marvin Anas Hahn, Reinier Kramer, and Danilo Lewanski, Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d’enfant, monotone, and double simple Hurwitz numbers, Adv. Math. 336 (2018), 38–69. MR 3846148, DOI 10.1016/j.aim.2018.07.028
- M. A. Hahn and D. Lewanski, Tropical Jucys Covers. arXiv preprint arXiv:1808.01383 (2018).
- M. A. Hahn, J.-W. M. van Ittersum, and F. Leid, Triply mixed coverings of arbitrary base curves: Quasimodularity, quantum curves and recursions, arXiv preprint arXiv:1901.03598 (2019).
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892), no. 3, 403–442 (German). MR 1510753, DOI 10.1007/BF01443420
- Paul Johnson, Double Hurwitz numbers via the infinite wedge, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6415–6440. MR 3356942, DOI 10.1090/S0002-9947-2015-06238-2
- A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Rep. Mathematical Phys. 5 (1974), no. 1, 107–112. MR 419576, DOI 10.1016/0034-4877(74)90019-6
- Maxim Kazarian and Peter Zograf, Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys. 105 (2015), no. 8, 1057–1084. MR 3366120, DOI 10.1007/s11005-015-0771-0
- Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230. MR 2457739, DOI 10.1090/conm/465/09104
- Paul Norbury, String and dilaton equations for counting lattice points in the moduli space of curves, Trans. Amer. Math. Soc. 365 (2013), no. 4, 1687–1709. MR 3009643, DOI 10.1090/S0002-9947-2012-05559-0
- Andrei Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), no. 4, 447–453. MR 1783622, DOI 10.4310/MRL.2000.v7.n4.a10
- A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006), no. 2, 517–560. MR 2199225, DOI 10.4007/annals.2006.163.517
- A. Okounkov and R. Pandharipande, The equivariant Gromov-Witten theory of $\textbf {P}^1$, Ann. of Math. (2) 163 (2006), no. 2, 561–605. MR 2199226, DOI 10.4007/annals.2006.163.561
- S. Shadrin, M. Shapiro, and A. Vainshtein, Chamber behavior of double Hurwitz numbers in genus 0, Adv. Math. 217 (2008), no. 1, 79–96. MR 2357323, DOI 10.1016/j.aim.2007.06.016
- Ilya Tyomkin, Tropical geometry and correspondence theorems via toric stacks, Math. Ann. 353 (2012), no. 3, 945–995. MR 2923954, DOI 10.1007/s00208-011-0702-z
- R. Vakil, The moduli space of curves and Gromov-Witten theory, Enumerative invariants in algebraic geometry and string theory, Lecture Notes in Math., vol. 1947, Springer, Berlin, 2008, pp. 143–198. MR 2493586, DOI 10.1007/978-3-540-79814-9_{4}
Additional Information
- Marvin Anas Hahn
- Affiliation: Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main, Germany
- MR Author ID: 1236383
- Email: hahn@math.uni-frankfurt.de
- Danilo Lewański
- Affiliation: Inst. Hautes Études Scientifiques (IHES), 35 Route de Chartres, 91440 Bures-sur-Yvette, Paris, France. Inst. de Physique Théorique (IPhT), Commissariat à l’énergie atomique, Orme des Merisiers Bat 774, 91191 Gif-sur-Yvette, Paris, France.
- Email: danilo.lewanski@ipht.fr
- Received by editor(s): May 7, 2019
- Received by editor(s) in revised form: July 9, 2019, and September 6, 2019
- Published electronically: March 27, 2020
- Additional Notes: The first author gratefully acknowledges financial support as part of the LOEWE research unit “Uniformized structures in Arithmetic and Geometry”
The second author was supported by the Max Planck Gesellschaft. - © Copyright 2020 by the authors
- Journal: Trans. Amer. Math. Soc. 373 (2020), 4685-4711
- MSC (2010): Primary 14N10, 14N35, 14T05
- DOI: https://doi.org/10.1090/tran/8006
- MathSciNet review: 4127859