## Automorphisms of Hilbert schemes of points on surfaces

HTML articles powered by AMS MathViewer

- by Pieter Belmans, Georg Oberdieck and Jørgen Vold Rennemo PDF
- Trans. Amer. Math. Soc.
**373**(2020), 6139-6156 Request permission

## Abstract:

We show that every automorphism of the Hilbert scheme of $n$ points on a weak Fano or general type surface is natural, i.e., induced by an automorphism of the surface, unless the surface is a product of curves and $n=2$. In the exceptional case there exists a unique nonnatural automorphism. More generally, we prove that any isomorphism between Hilbert schemes of points on smooth projective surfaces, where one of the surfaces is weak Fano or of general type and not equal to the product of curves, is natural. We also show that every automorphism of the Hilbert scheme of $2$ points on $\mathbb {P}^n$ is natural.## References

- M. Atiyah,
*On the Krull-Schmidt theorem with application to sheaves*, Bull. Soc. Math. France**84**(1956), 307–317. MR**86358**, DOI 10.24033/bsmf.1475 - Arnaud Beauville,
*Variétés Kähleriennes dont la première classe de Chern est nulle*, J. Differential Geom.**18**(1983), no. 4, 755–782 (1984) (French). MR**730926** - Arnaud Beauville,
*Some remarks on Kähler manifolds with $c_{1}=0$*, Classification of algebraic and analytic manifolds (Katata, 1982) Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 1–26. MR**728605** - Arnaud Beauville,
*Complex manifolds with split tangent bundle*, Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 61–70. MR**1760872** - Bhargav Bhatt, Wei Ho, Zsolt Patakfalvi, and Christian Schnell,
*Moduli of products of stable varieties*, Compos. Math.**149**(2013), no. 12, 2036–2070. MR**3143705**, DOI 10.1112/S0010437X13007288 - Pieter Belmans,
*Hochschild cohomology of noncommutative planes and quadrics*, J. Noncommut. Geom.**13**(2019), no. 2, 769–795. MR**3988086**, DOI 10.4171/JNCG/338 - Indranil Biswas and Tomás L. Gómez,
*Automorphisms of a symmetric product of a curve (with an appendix by Najmuddin Fakhruddin)*, Doc. Math.**22**(2017), 1181–1192. With an appendix by Najmuddin Fakhruddin. MR**3690270** - Alexei Bondal and Dmitri Orlov,
*Reconstruction of a variety from the derived category and groups of autoequivalences*, Compositio Math.**125**(2001), no. 3, 327–344. MR**1818984**, DOI 10.1023/A:1002470302976 - Samuel Boissière,
*Automorphismes naturels de l’espace de Douady de points sur une surface*, Canad. J. Math.**64**(2012), no. 1, 3–23 (French, with French summary). MR**2932167**, DOI 10.4153/CJM-2011-041-5 - Samuel Boissière and Alessandra Sarti,
*A note on automorphisms and birational transformations of holomorphic symplectic manifolds*, Proc. Amer. Math. Soc.**140**(2012), no. 12, 4053–4062. MR**2957195**, DOI 10.1090/S0002-9939-2012-11277-8 - Jan Cheah,
*Cellular decompositions for nested Hilbert schemes of points*, Pacific J. Math.**183**(1998), no. 1, 39–90. MR**1616606**, DOI 10.2140/pjm.1998.183.39 - Taro Hayashi,
*Universal covering Calabi-Yau manifolds of the Hilbert schemes of $n$-points of Enriques surfaces*, Asian J. Math.**21**(2017), no. 6, 1099–1120. MR**3778120**, DOI 10.4310/AJM.2017.v21.n6.a4 - T. Hayashi,
*Automorphisms of the Hilbert scheme of $n$ points of a rational surface and the anticanonical Iitaka dimension*, Geometriae Dedicata (2020), published online ahead of print. - Andreas Krug,
*$\Bbb P$-functor versions of the Nakajima operators*, Algebr. Geom.**6**(2019), no. 6, 678–715. MR**4009177**, DOI 10.14231/ag-2019-029 - Chunyi Li,
*Deformations of the Hilbert scheme of points on a del Pezzo surface*, Mosc. Math. J.**17**(2017), no. 2, 291–321. MR**3669875**, DOI 10.17323/1609-4514-2017-17-2-291-321 - Ezra Miller and Bernd Sturmfels,
*Combinatorial commutative algebra*, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR**2110098** - K. Oguiso,
*A question of Doctor Malte Wandel on automorphisms of the punctural Hilbert schemes of K3 surfaces*, arXiv:1402.4228. - Fumio Sakai,
*Anticanonical models of rational surfaces*, Math. Ann.**269**(1984), no. 3, 389–410. MR**761313**, DOI 10.1007/BF01450701 - W. R. Scott,
*Group theory*, 2nd ed., Dover Publications, Inc., New York, 1987. MR**896269** - K\B{o}ta Yoshioka,
*Moduli spaces of stable sheaves on abelian surfaces*, Math. Ann.**321**(2001), no. 4, 817–884. MR**1872531**, DOI 10.1007/s002080100255 - R. Zuffetti,
*Strongly ambiguous Hilbert squares of projective K3 surfaces with Picard number one*, Rend. Semin. Mat. Univ. Politec. Torino**77**, 1 (2019), 113–130

## Additional Information

**Pieter Belmans**- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 1110715
- Email: pbelmans@math.uni-bonn.de
**Georg Oberdieck**- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- Email: georgo@math.uni-bonn.de
**Jørgen Vold Rennemo**- Affiliation: Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, 0316 Oslo, Norway
- Email: jorgeren@uio.no
- Received by editor(s): August 14, 2019
- Received by editor(s) in revised form: December 10, 2019
- Published electronically: June 24, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 6139-6156 - MSC (2010): Primary 14C05, 14J50
- DOI: https://doi.org/10.1090/tran/8106
- MathSciNet review: 4155174