An explicit Pólya-Vinogradov inequality via Partial Gaussian sums
Authors:
Matteo Bordignon and Bryce Kerr
Journal:
Trans. Amer. Math. Soc. 373 (2020), 6503-6527
MSC (2010):
Primary 11L40, 11L05, 11H06, 11H60
DOI:
https://doi.org/10.1090/tran/8138
Published electronically:
July 8, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we obtain a new fully explicit constant for the Pólya-Vinogradov inequality for squarefree modulus. Given a primitive character to squarefree modulus
, we prove the following upper bound:
![]() |
where





- [1] Michael A. Bennett, Greg Martin, Kevin O’Bryant, and Andrew Rechnitzer, Explicit bounds for primes in arithmetic progressions, Illinois J. Math. 62 (2018), no. 1-4, 427–532. MR 3922423, https://doi.org/10.1215/ijm/1552442669
- [2] U. Betke, M. Henk, and J. M. Wills, Successive-minima-type inequalities, Discrete Comput. Geom. 9 (1993), no. 2, 165–175. MR 1194034, https://doi.org/10.1007/BF02189316
- [3]
M. Bordignon, Explicit bounds on exceptional zeroes of Dirichlet
-functions, J. Number Theory, (to appear).
- [4] Matteo Bordignon, Explicit bounds on exceptional zeroes of Dirichlet 𝐿-functions II, J. Number Theory 210 (2020), 481–487. MR 4057538, https://doi.org/10.1016/j.jnt.2019.10.011
- [5] D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112. MR 93504, https://doi.org/10.1112/S0025579300001157
- [6] D. A. Burgess, On character sums and 𝐿-series, Proc. London Math. Soc. (3) 12 (1962), 193–206. MR 132733, https://doi.org/10.1112/plms/s3-12.1.193
- [7] D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179–192. MR 132732, https://doi.org/10.1112/plms/s3-12.1.179
- [8] D. A. Burgess, On character sums and 𝐿-series. II, Proc. London Math. Soc. (3) 13 (1963), 524–536. MR 148626, https://doi.org/10.1112/plms/s3-13.1.524
- [9] D. A. Burgess, Partial Gaussian sums, Bull. London Math. Soc. 20 (1988), no. 6, 589–592. MR 980760, https://doi.org/10.1112/blms/20.6.589
- [10] D. A. Burgess, Partial Gaussian sums. II, Bull. London Math. Soc. 21 (1989), no. 2, 153–158. MR 976058, https://doi.org/10.1112/blms/21.2.153
- [11] D. A. Burgess, Partial Gaussian sums. III, Glasgow Math. J. 34 (1992), no. 2, 253–261. MR 1167341, https://doi.org/10.1017/S001708950000879X
- [12] D. A. Burgess, The character sum estimate with 𝑟=3, J. London Math. Soc. (2) 33 (1986), no. 2, 219–226. MR 838632, https://doi.org/10.1112/jlms/s2-33.2.219
- [13] Fernando Chamizo, On twisted character sums, Arch. Math. (Basel) 96 (2011), no. 5, 417–421. MR 2805345, https://doi.org/10.1007/s00013-011-0255-0
- [14] Kevin Ford, Florian Luca, and Pieter Moree, Values of the Euler 𝜙-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math. Comp. 83 (2014), no. 287, 1447–1476. MR 3167466, https://doi.org/10.1090/S0025-5718-2013-02749-4
- [15] Dmitriy Frolenkov, A numerically explicit version of the Pólya-Vinogradov inequality, Mosc. J. Comb. Number Theory 1 (2011), no. 3, 25–41. MR 2988376
- [16] D. A. Frolenkov and K. Soundararajan, A generalization of the Pólya-Vinogradov inequality, Ramanujan J. 31 (2013), no. 3, 271–279. MR 3081668, https://doi.org/10.1007/s11139-012-9462-y
- [17] Andrew Granville and K. Soundararajan, Large character sums: pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 357–384. MR 2276774, https://doi.org/10.1090/S0894-0347-06-00536-4
- [18] Adolf Hildebrand, On the constant in the Pólya-Vinogradov inequality, Canad. Math. Bull. 31 (1988), no. 3, 347–352. MR 956367, https://doi.org/10.4153/CMB-1988-050-1
- [19] Adolf Hildebrand, Large values of character sums, J. Number Theory 29 (1988), no. 3, 271–296. MR 955953, https://doi.org/10.1016/0022-314X(88)90106-0
- [20] B. Kerr, On the constant in the Pólya-Vinogradov inequality, 1807.09573, (2018).
- [21] Ming-Chit Liu and Tianze Wang, Distribution of zeros of Dirichlet 𝐿-functions and an explicit formula for 𝜓(𝑡,𝜒), Acta Arith. 102 (2002), no. 3, 261–293. MR 1884719, https://doi.org/10.4064/aa102-3-5
- [22] Kurt Mahler, Ein Übertragungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fys. 68 (1939), 93–102 (German). MR 0001242
- [23] Kevin S. McCurley, Explicit zero-free regions for Dirichlet 𝐿-functions, J. Number Theory 19 (1984), no. 1, 7–32. MR 751161, https://doi.org/10.1016/0022-314X(84)90089-1
- [24] H. L. Montgomery and R. C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), no. 1, 69–82. MR 457371, https://doi.org/10.1007/BF01390204
- [25] T. Morrill and T. Trudgian, An elementary bound on Siegel zeroes. arxiv:1811.12521, (2018).
- [26] David J. Platt, Numerical computations concerning the GRH, Math. Comp. 85 (2016), no. 302, 3009–3027. MR 3522979, https://doi.org/10.1090/S0025-5718-2016-03077-X
- [27] Carl Pomerance, Remarks on the Pólya-Vinogradov inequality, Integers 11 (2011), no. 4, 531–542. MR 2988079, https://doi.org/10.1515/integ.2011.039
- [28] Herbert Robbins, A remark on Stirling’s formula, Amer. Math. Monthly 62 (1955), 26–29. MR 69328, https://doi.org/10.2307/2308012
- [29] J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de 𝑁, Canad. Math. Bull. 26 (1983), no. 4, 485–492 (French, with English summary). MR 716590, https://doi.org/10.4153/CMB-1983-078-5
- [30] R. E. A. C. Paley, A Theorem on Characters, J. London Math. Soc. 7 (1932), no. 1, 28–32. MR 1574456, https://doi.org/10.1112/jlms/s1-7.1.28
- [31] Guy Robin, Estimation de la fonction de Tchebychef 𝜃 sur le 𝑘-ième nombre premier et grandes valeurs de la fonction 𝜔(𝑛) nombre de diviseurs premiers de 𝑛, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, https://doi.org/10.4064/aa-42-4-367-389
- [32] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- [33] Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012
- [34] Enrique Treviño, The Burgess inequality and the least 𝑘th power non-residue, Int. J. Number Theory 11 (2015), no. 5, 1653–1678. MR 3376232, https://doi.org/10.1142/S1793042115400163
- [35] A. I. Vinogradov, On the symmetry property for sums with Dirichlet characters, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1965 (1965), no. 1, 21–27 (Russian, with Uzbek summary). MR 0175860
- [36] Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), no. 246, 907–938. MR 2031415, https://doi.org/10.1090/S0025-5718-03-01517-5
- [37] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Math. et Sci., No. 1041.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11L40, 11L05, 11H06, 11H60
Retrieve articles in all journals with MSC (2010): 11L40, 11L05, 11H06, 11H60
Additional Information
Matteo Bordignon
Affiliation:
School of Science, The University of New South Wales Canberra, Australia
MR Author ID:
1324990
Email:
m.bordignon@student.adfa.edu.au
Bryce Kerr
Affiliation:
Department of Mathematics and Statistics, University of Turku, Turku, Finland
Email:
bryce.kerr@utu.fi
DOI:
https://doi.org/10.1090/tran/8138
Received by editor(s):
September 3, 2019
Received by editor(s) in revised form:
January 22, 2020
Published electronically:
July 8, 2020
Additional Notes:
The second author was supported by Australian Research Council Discovery Project DP160100932.
Article copyright:
© Copyright 2020
American Mathematical Society