Subgroup distortion of 3-manifold groups
Authors:
Hoang Thanh Nguyen and Hongbin Sun
Journal:
Trans. Amer. Math. Soc. 373 (2020), 6683-6711
MSC (2010):
Primary 20F65, 20F67, 57M50
DOI:
https://doi.org/10.1090/tran/8139
Published electronically:
July 3, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we compute the subgroup distortion of all finitely generated subgroups of all finitely generated -manifold groups, and the subgroup distortion in this case can only be linear, quadratic, exponential and double exponential. It turns out that the subgroup distortion of a subgroup of a
-manifold group is closely related to the separability of this subgroup.
- [Agol04]
I. Agol,
Tameness of hyperbolic 3-manifolds,
math/0405568. - [Agol13] Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553, https://doi.org/10.1016/j.procs.2013.05.269
- [BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
- [BN08] Jason A. Behrstock and Walter D. Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008), no. 2, 217–240. MR 2376814, https://doi.org/10.1215/S0012-7094-08-14121-3
- [CG06] Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. MR 2188131, https://doi.org/10.1090/S0894-0347-05-00513-8
- [Can96] Richard D. Canary, A covering theorem for hyperbolic 3-manifolds and its applications, Topology 35 (1996), no. 3, 751–778. MR 1396777, https://doi.org/10.1016/0040-9383(94)00055-7
- [DK18] Cornelia Druţu and Michael Kapovich, Geometric group theory, American Mathematical Society Colloquium Publications, vol. 63, American Mathematical Society, Providence, RI, 2018. With an appendix by Bogdan Nica. MR 3753580
- [Hru10] G. Christopher Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), no. 3, 1807–1856. MR 2684983, https://doi.org/10.2140/agt.2010.10.1807
- [HK09] G. Christopher Hruska and Bruce Kleiner, Erratum to: “Hadamard spaces with isolated flats” [Geom. Topol. 9 (2005), 1501–1538; MR2175151], Geom. Topol. 13 (2009), no. 2, 699–707. MR 2469527, https://doi.org/10.2140/gt.2009.13.699
- [HN19] G. Christopher Hruska and Hoang Thanh Nguyen, Distortion of surfaces in graph manifolds, Algebr. Geom. Topol. 19 (2019), no. 1, 363–395. MR 3910584, https://doi.org/10.2140/agt.2019.19.363
- [Leeb95] Bernhard Leeb, 3-manifolds with(out) metrics of nonpositive curvature, Invent. Math. 122 (1995), no. 2, 277–289. MR 1358977, https://doi.org/10.1007/BF01231445
- [Liu17] Yi Liu, A characterization of virtually embedded subsurfaces in 3-manifolds, Trans. Amer. Math. Soc. 369 (2017), no. 2, 1237–1264. MR 3572272, https://doi.org/10.1090/S0002-9947-2016-06707-0
- [Ngu19a] Hoang Thanh Nguyen, Distortion of surfaces in 3-manifolds, J. Topol. 12 (2019), no. 4, 1115–1145. MR 3977873, https://doi.org/10.1112/topo.12114
- [Ngu19b] Hoang Thanh Nguyen, Quasi-isometries of pairs: surfaces in graph manifolds, Internat. J. Algebra Comput. 29 (2019), no. 4, 681–698. MR 3964355, https://doi.org/10.1142/S0218196719500218
- [NR93] Graham A. Niblo and Martin A. Roller (eds.), Geometric group theory. Vol. 2, London Mathematical Society Lecture Note Series, vol. 182, Cambridge University Press, Cambridge, 1993. MR 1253543
- [Osin01] D. V. Osin, Subgroup distortions in nilpotent groups, Comm. Algebra 29 (2001), no. 12, 5439–5463. MR 1872804, https://doi.org/10.1081/AGB-100107938
- [Pau05] Gustav Paulik, Gluing spaces and analysis, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 372, Universität Bonn, Mathematisches Institut, Bonn, 2005. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2005. MR 2204257
- [PW14] Piotr Przytycki and Daniel T. Wise, Separability of embedded surfaces in 3-manifolds, Compos. Math. 150 (2014), no. 9, 1623–1630. MR 3260144, https://doi.org/10.1112/S0010437X14007350
- [Rie93] Eleanor Gilbert Rieffel, Groups coarse quasi-isometric to the hyperbolic plane cross the real line, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–University of California, Los Angeles. MR 2689693
- [RW98] J. Hyam Rubinstein and Shicheng Wang, 𝜋₁-injective surfaces in graph manifolds, Comment. Math. Helv. 73 (1998), no. 4, 499–515. MR 1639876, https://doi.org/10.1007/s000140050066
- [Sco73] G. P. Scott, Compact submanifolds of 3-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, https://doi.org/10.1112/jlms/s2-7.2.246
- [Sisto] A. Sisto, Lectures note on geometric group theory, https://people.math.ethz.ch/~alsisto/LectureNotesGGT.pdf.
- [Sun18]
H. Sun, A characterization on separable subgroups of
-manifold groups, 1805.08580, to appear in Journal of Topology.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20F65, 20F67, 57M50
Retrieve articles in all journals with MSC (2010): 20F65, 20F67, 57M50
Additional Information
Hoang Thanh Nguyen
Affiliation:
Beijing International Center for Mathematical Research, Peking University, Beijing 100871, People’s Republic of China
MR Author ID:
1310129
Email:
htnguyen.dn.vn@outlook.com
Hongbin Sun
Affiliation:
Department of Mathematics, Rutgers University-New Brunswick, Hill center, Busch Campus, Piscataway, New Jersey 08854
MR Author ID:
898463
Email:
hongbin.sun@rutgers.edu
DOI:
https://doi.org/10.1090/tran/8139
Received by editor(s):
October 22, 2019
Received by editor(s) in revised form:
February 9, 2020, and February 10, 2020
Published electronically:
July 3, 2020
Additional Notes:
The second author was partially supported by NSF grant DMS-1840696.
Article copyright:
© Copyright 2020
American Mathematical Society