The polylog quotient and the Goncharov quotient in computational Chabauty–Kim theory II
HTML articles powered by AMS MathViewer
- by Ishai Dan-Cohen and David Corwin PDF
- Trans. Amer. Math. Soc. 373 (2020), 6835-6861 Request permission
Abstract:
This is the second installment in a multi-part series starting with Corwin–Dan-Cohen [arXiv:1812.05707v3]. Building on previous work by Dan-Cohen–Wewers, Dan-Cohen, and F. Brown, we push the computational boundary of our explicit motivic version of Kim’s method in the case of the thrice punctured line over an open subscheme of $\operatorname {Spec}\mathbb {Z}$. To do so, we develop a refined version of the algorithm of Dan-Cohen–Wewers tailored specifically to this case. We also commit ourselves fully to working with the polylogarithmic quotient. This allows us to restrict our calculus with motivic iterated integrals to the so-called depth-$1$ part of the mixed Tate Galois group studied extensively by Goncharov. An application was given in Corwin–Dan-Cohen [arXiv:1812.05707v3], where we verified Kim’s conjecture in an interesting new case.References
- J. Balakrishnan, I. Dan-Cohen, M. Kim, and S. Wewers. A non-abelian conjecture of Birch and Swinnerton-Dyer type for hyperbolic curves. Preprint. arXiv:1209.0640v1.
- Amnon Besser and Rob de Jeu, $\textrm {Li}^{(p)}$-service? An algorithm for computing $p$-adic polylogarithms, Math. Comp. 77 (2008), no. 262, 1105–1134. MR 2373194, DOI 10.1090/S0025-5718-07-02027-3
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- Armand Borel, Cohomologie de $\textrm {SL}_{n}$ et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613–636 (French). MR 506168
- Francis Brown. Integral points on curves, the unit equation, and motivic periods. arXiv:1704.00555v1.
- Francis Brown, Mixed Tate motives over $\Bbb Z$, Ann. of Math. (2) 175 (2012), no. 2, 949–976. MR 2993755, DOI 10.4007/annals.2012.175.2.10
- A. Baker and G. Wüstholz, Logarithmic forms and Diophantine geometry, New Mathematical Monographs, vol. 9, Cambridge University Press, Cambridge, 2007. MR 2382891
- David Corwin and Ishai Dan-Cohen, The polylog quotient and the Goncharov quotient in computational Chabauty-Kim theory I, arXiv:1812.05707v3, 2018.
- Ishai Dan-Cohen, Mixed Tate motives and the unit equation II, arXiv:1510.01362v3, 2015.
- Ishai Dan-Cohen and Tomer Schlank, Rational motivic path spaces and Kim’s relative unipotent section conjecture, arXiv:1703.10776, 2017.
- Ishai Dan-Cohen and Stefan Wewers, Explicit Chabauty-Kim theory for the thrice punctured line in depth 2, Proc. Lond. Math. Soc. (3) 110 (2015), no. 1, 133–171. MR 3299602, DOI 10.1112/plms/pdu034
- Ishai Dan-Cohen and Stefan Wewers, Mixed Tate motives and the unit equation, Int. Math. Res. Not. IMRN 17 (2016), 5291–5354. MR 3556439, DOI 10.1093/imrn/rnv239
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297 (French). MR 1012168, DOI 10.1007/978-1-4613-9649-9_{3}
- Pierre Deligne and Alexander B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, 1–56 (French, with English and French summaries). MR 2136480, DOI 10.1016/j.ansens.2004.11.001
- B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936
- Jan-Hendrik Evertse and Kálmán Győry, Unit equations in Diophantine number theory, Cambridge Studies in Advanced Mathematics, vol. 146, Cambridge University Press, Cambridge, 2015. MR 3524535, DOI 10.1017/CBO9781316160749
- Hidekazu Furusho, $p$-adic multiple zeta values. I. $p$-adic multiple polylogarithms and the $p$-adic KZ equation, Invent. Math. 155 (2004), no. 2, 253–286. MR 2031428, DOI 10.1007/s00222-003-0320-9
- A. B. Goncharov, Polylogarithms and motivic Galois groups, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43–96. MR 1265551
- A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005), no. 2, 209–284. MR 2140264, DOI 10.1215/S0012-7094-04-12822-2
- Minhyong Kim, The motivic fundamental group of $\mathbf P^1\sbs \{0,1,\infty \}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629–656. MR 2181717, DOI 10.1007/s00222-004-0433-9
- Minhyong Kim, Tangential localization for Selmer varieties, Duke Math. J. 161 (2012), no. 2, 173–199. MR 2876929, DOI 10.1215/00127094-1507332
- Marc Levine, Tate motives and the fundamental group, Cycles, motives and Shimura varieties, Tata Inst. Fund. Res. Stud. Math., vol. 21, Tata Inst. Fund. Res., Mumbai, 2010, pp. 265–392. MR 2906029
- Rafael von Känel and Benjamin Matschke, Solving S-unit, Mordell, Thue, Thue–Mahler and generalized Ramanujan–Nagell equations via Shimura–Taniyama conjecture, arXiv:1605.06079, 2016.
Additional Information
- Ishai Dan-Cohen
- Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- MR Author ID: 999259
- Email: ishaidc@gmail.com
- David Corwin
- Affiliation: Department of Mathematics, 970 Evans Hall #3840, University of California, Berkeley, Berkeley, California 94720-3840
- MR Author ID: 1073361
- Email: corwind@alum.mit.edu
- Received by editor(s): December 12, 2018
- Received by editor(s) in revised form: April 23, 2019
- Published electronically: August 6, 2020
- Additional Notes: The first author was supported by ISF grant 87590021.
The second author was supported by NSF RTG grant 1646385, by NSF grants DMS-1069236 and DMS-1601946 (to Bjorn Poonen), and by Simons Foundation grant #402472 (to Bjorn Poonen). - © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 6835-6861
- MSC (2010): Primary 11G55, 14F35, 14F42, 14G05; Secondary 14F30
- DOI: https://doi.org/10.1090/tran/7964
- MathSciNet review: 4155193