The Bruhat order on abelian ideals of Borel subalgebras
HTML articles powered by AMS MathViewer
- by Jacopo Gandini, Andrea Maffei, Pierluigi Möseneder Frajria and Paolo Papi PDF
- Trans. Amer. Math. Soc. 373 (2020), 6999-7018 Request permission
Abstract:
Let $G$ be a quasi-simple algebraic group over an algebraically closed field $\mathsf {k}$ whose characteristic is not very bad for $G$, and let $B$ be a Borel subgroup of $G$ with Lie algebra $\mathfrak {b}$. Given a $B$-stable abelian subalgebra $\mathfrak {a}$ of the nilradical of $\mathfrak {b}$, we parametrize the $B$-orbits in $\mathfrak {a}$ and we describe their closure relations.References
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Paola Cellini and Paolo Papi, ad-nilpotent ideals of a Borel subalgebra, J. Algebra 225 (2000), no. 1, 130–141. MR 1743654, DOI 10.1006/jabr.1999.8099
- Paola Cellini and Paolo Papi, Abelian ideals of Borel subalgebras and affine Weyl groups, Adv. Math. 187 (2004), no. 2, 320–361. MR 2078340, DOI 10.1016/j.aim.2003.08.011
- Russell Fowler and Gerhard Röhrle, Spherical nilpotent orbits in positive characteristic, Pacific J. Math. 237 (2008), no. 2, 241–286. MR 2421122, DOI 10.2140/pjm.2008.237.241
- J. Gandini and A. Maffei, The Bruhat order on Hermitian symmetric varieties, and on abelian nilradicals, J. Eur. Math. Soc., to appear.
- J. Gandini, P. Möseneder Frajria, and P. Papi, Nilpotent orbits of height 2 and involutions in the affine Weyl group, arXiv:1908.01337 [math.AG], 28 pp. Indagationes Mathematicae, to appear, DOI 10.1016/j.indag.2020.04.006.
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Bertram Kostant, The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Internat. Math. Res. Notices 5 (1998), 225–252. MR 1616913, DOI 10.1155/S107379289800018X
- Shrawan Kumar, A generalization of Cachazo-Douglas-Seiberg-Witten conjecture for symmetric spaces, Math. Ann. 346 (2010), no. 1, 67–84. MR 2558887, DOI 10.1007/s00208-009-0385-x
- Dmitrii I. Panyushev, Complexity and nilpotent orbits, Manuscripta Math. 83 (1994), no. 3-4, 223–237. MR 1277527, DOI 10.1007/BF02567611
- Dmitri I. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 5, 1453–1476 (English, with English and French summaries). MR 1723823
- Dmitri I. Panyushev, Abelian ideals of a Borel subalgebra and long positive roots, Int. Math. Res. Not. 35 (2003), 1889–1913. MR 1995141, DOI 10.1155/S1073792803211053
- Dmitri I. Panyushev, Normalizers of ad-nilpotent ideals, European J. Combin. 27 (2006), no. 2, 153–178. MR 2199771, DOI 10.1016/j.ejc.2004.10.002
- Dmitri Panyushev, On the orbits of a Borel subgroup in abelian ideals, Transform. Groups 22 (2017), no. 2, 503–524. MR 3649465, DOI 10.1007/s00031-016-9391-8
- Dmitri Panyushev and Gerhard Röhrle, Spherical orbits and abelian ideals, Adv. Math. 159 (2001), no. 2, 229–246. MR 1825058, DOI 10.1006/aima.2000.1959
- R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), no. 1-3, 389–436. MR 1066573, DOI 10.1007/BF00147354
- R. W. Richardson and T. A. Springer, Complements to: “The Bruhat order on symmetric varieties” [Geom. Dedicata 35 (1990), no. 1-3, 389–436; MR1066573 (92e:20032)], Geom. Dedicata 49 (1994), no. 2, 231–238. MR 1266276, DOI 10.1007/BF01610623
- Gerhard Röhrle, On normal abelian subgroups in parabolic groups, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 5, 1455–1482 (English, with English and French summaries). MR 1662259
- Eric N. Sommers, $B$-stable ideals in the nilradical of a Borel subalgebra, Canad. Math. Bull. 48 (2005), no. 3, 460–472. MR 2154088, DOI 10.4153/CMB-2005-043-4
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- Ruedi Suter, Abelian ideals in a Borel subalgebra of a complex simple Lie algebra, Invent. Math. 156 (2004), no. 1, 175–221. MR 2047661, DOI 10.1007/s00222-003-0337-0
Additional Information
- Jacopo Gandini
- Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
- MR Author ID: 932646
- Email: jacopo.gandini@unibo.it
- Andrea Maffei
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
- MR Author ID: 612173
- Email: andrea.maffei@unipi.it
- Pierluigi Möseneder Frajria
- Affiliation: Politecnico di Milano, Polo regionale di Como, Via Valleggio 11, 22100 Como, Italy
- Email: pierluigi.moseneder@polimi.it
- Paolo Papi
- Affiliation: Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy
- MR Author ID: 322097
- Email: papi@mat.uniroma1.it
- Received by editor(s): March 4, 2019
- Received by editor(s) in revised form: November 21, 2019
- Published electronically: July 28, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 6999-7018
- MSC (2010): Primary 14M17; Secondary 14M27, 17B08
- DOI: https://doi.org/10.1090/tran/8092
- MathSciNet review: 4155198