Involution on pseudoisotopy spaces and the space of nonnegatively curved metrics
Authors:
Mauricio Bustamante, Francis Thomas Farrell and Yi Jiang
Journal:
Trans. Amer. Math. Soc. 373 (2020), 7225-7252
MSC (2010):
Primary 19D10; Secondary 55N91
DOI:
https://doi.org/10.1090/tran/8135
Published electronically:
July 28, 2020
MathSciNet review:
4155206
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that certain involutions defined by Vogell and Burghelea-Fiedorowicz on the rational algebraic -theory of spaces coincide. This gives a way to compute the positive and negative eigenspaces of the involution on rational homotopy groups of pseudoisotopy spaces from the involution on rational
-equivariant homology groups of the free loop space of a simply-connected manifold. As an application, we give explicit dimensions of the open manifolds
that appear in Belegradek-Farrell-Kapovitch's work for which the spaces of complete nonnegatively curved metrics on
have nontrivial rational homotopy groups.
- [BFK17] Igor Belegradek, F. Thomas Farrell, and Vitali Kapovitch, Space of nonnegatively curved metrics and pseudoisotopies, J. Differential Geom. 105 (2017), no. 3, 345–374. MR 3619306
- [Bur89] D. Burghelea, The free loop space. I. Algebraic topology, Algebraic topology (Evanston, IL, 1988) Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 59–85. MR 1022674, https://doi.org/10.1090/conm/096/1022674
- [Bur86] Dan Burghelea, Cyclic homology and the algebraic 𝐾-theory of spaces. I, Applications of algebraic 𝐾-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 89–115. MR 862632, https://doi.org/10.1090/conm/055.1/862632
- [BF85] D. Burghelea and Z. Fiedorowicz, Hermitian algebraic 𝐾-theory of simplicial rings and topological spaces, J. Math. Pures Appl. (9) 64 (1985), no. 2, 175–235. MR 820117
- [BF86] D. Burghelea and Z. Fiedorowicz, Cyclic homology and algebraic 𝐾-theory of spaces. II, Topology 25 (1986), no. 3, 303–317. MR 842427, https://doi.org/10.1016/0040-9383(86)90046-7
- [Dun89] Gerald Dunn, Dihedral and quaternionic homology and mapping spaces, 𝐾-Theory 3 (1989), no. 2, 141–161. MR 1029956, https://doi.org/10.1007/BF00533376
- [Dwy80] W. G. Dwyer, Twisted homological stability for general linear groups, Ann. of Math. (2) 111 (1980), no. 2, 239–251. MR 569072, https://doi.org/10.2307/1971200
- [FH78] F. T. Farrell and W. C. Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 325–337. MR 520509
- [GJ09] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR 2840650
- [Goo85] Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), no. 2, 187–215. MR 793184, https://doi.org/10.1016/0040-9383(85)90055-2
- [Goo86] Thomas G. Goodwillie, Relative algebraic 𝐾-theory and cyclic homology, Ann. of Math. (2) 124 (1986), no. 2, 347–402. MR 855300, https://doi.org/10.2307/1971283
- [Hat78] A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21. MR 520490
- [Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- [Hu59] Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- [HKV$^+$02] Thomas Hüttemann, John R. Klein, Wolrad Vogell, Friedhelm Waldhausen, and Bruce Williams, The “fundamental theorem” for the algebraic 𝐾-theory of spaces. II. The canonical involution, J. Pure Appl. Algebra 167 (2002), no. 1, 53–82. MR 1868117, https://doi.org/10.1016/S0022-4049(01)00067-6
- [Igu88] Kiyoshi Igusa, The stability theorem for smooth pseudoisotopies, 𝐾-Theory 2 (1988), no. 1-2, vi+355. MR 972368, https://doi.org/10.1007/BF00533643
- [Igu02] Kiyoshi Igusa, Higher Franz-Reidemeister torsion, AMS/IP Studies in Advanced Mathematics, vol. 31, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. MR 1945530
- [KS88] R. L. Krasauskas and Yu. P. Solov′ev, Rational Hermitian 𝐾-theory and dihedral homology, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 5, 935–969, 1118 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 2, 261–293. MR 972090, https://doi.org/10.1070/IM1989v033n02ABEH000826
- [Lod90] Gerald M. Lodder, Dihedral homology and the free loop space, Proc. London Math. Soc. (3) 60 (1990), no. 1, 201–224. MR 1023809, https://doi.org/10.1112/plms/s3-60.1.201
- [Lod96] Jerry M. Lodder, Dihedral homology and Hermitian 𝐾-theory, 𝐾-Theory 10 (1996), no. 2, 175–196. MR 1384461, https://doi.org/10.1007/BF00536611
- [Qui73] Daniel Quillen, Higher algebraic 𝐾-theory. I, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
- [VPB85] Micheline Vigué-Poirrier and Dan Burghelea, A model for cyclic homology and algebraic 𝐾-theory of 1-connected topological spaces, J. Differential Geom. 22 (1985), no. 2, 243–253. MR 834279
- [Vog84] Wolrad Vogell, The canonical involution on the algebraic 𝐾-theory of spaces, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 156–172. MR 764578, https://doi.org/10.1007/BFb0075566
- [Vog85] Wolrad Vogell, The involution in the algebraic 𝐾-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 277–317. MR 802795, https://doi.org/10.1007/BFb0074448
- [Wal78] Friedhelm Waldhausen, Algebraic 𝐾-theory of topological spaces. I, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 35–60. MR 520492
- [Wal82] Friedhelm Waldhausen, Algebraic 𝐾-theory of spaces, a manifold approach, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 141–184. MR 686115
- [Wal85] Friedhelm Waldhausen, Algebraic 𝐾-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, https://doi.org/10.1007/BFb0074449
- [Wal87] Friedhelm Waldhausen, Algebraic 𝐾-theory of spaces, concordance, and stable homotopy theory, Algebraic topology and algebraic 𝐾-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 392–417. MR 921486
- [WJR13] Friedhelm Waldhausen, Bjørn Jahren, and John Rognes, Spaces of PL manifolds and categories of simple maps, Annals of Mathematics Studies, vol. 186, Princeton University Press, Princeton, NJ, 2013. MR 3202834
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 19D10, 55N91
Retrieve articles in all journals with MSC (2010): 19D10, 55N91
Additional Information
Mauricio Bustamante
Affiliation:
Department of Pure Mathematics and Mathematical Sciences, University of Cambridge, United Kingdom
MR Author ID:
1164502
Email:
bustamante@dpmms.cam.ac.uk
Francis Thomas Farrell
Affiliation:
Yau Mathematical Sciences Center, Tsinghua University, Beijing, People’s Republic of China
MR Author ID:
65305
Email:
farrell@math.binghamton.edu
Yi Jiang
Affiliation:
Yau Mathematical Sciences Center, Tsinghua University, Beijing, People’s Republic of China
MR Author ID:
1079891
Email:
yjiang117@mail.tsinghua.edu.cn
DOI:
https://doi.org/10.1090/tran/8135
Received by editor(s):
May 4, 2017
Received by editor(s) in revised form:
August 8, 2019, and February 6, 2020
Published electronically:
July 28, 2020
Additional Notes:
The third author’s research was partially supported by NSFC 11571343 and NSFC 11801298.
Article copyright:
© Copyright 2020
American Mathematical Society