Julia sets as buried Julia components
HTML articles powered by AMS MathViewer
- by Youming Wang and Fei Yang PDF
- Trans. Amer. Math. Soc. 373 (2020), 7287-7326 Request permission
Abstract:
Let $f$ be a rational map with degree $d\geq 2$ whose Julia set is connected but not equal to the whole Riemann sphere. It is proved that there exists a rational map $g$ such that $g$ contains a buried Julia component on which the dynamics is quasiconformally conjugate to that of $f$ on the Julia set if and only if $f$ does not have parabolic basins and Siegel disks. If such $g$ exists, then the degree can be chosen such that $\deg (g)\leq 7d-2$. In particular, if $f$ is a polynomial, then $g$ can be chosen such that $\deg (g)\leq 4d+4$. Moreover, some quartic and cubic rational maps whose Julia sets contain buried Jordan curves are also constructed.References
- Rodrigo Bamón and Juan Bobenrieth, The rational maps $z\mapsto 1+1/\omega z^d$ have no Herman rings, Proc. Amer. Math. Soc. 127 (1999), no. 2, 633–636. MR 1469397, DOI 10.1090/S0002-9939-99-04566-9
- Paul Blanchard, Robert L. Devaney, Antonio Garijo, and Elizabeth D. Russell, A generalized version of the McMullen domain, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 8, 2309–2318. MR 2463865, DOI 10.1142/S0218127408021725
- A. F. Beardon, The components of a Julia set, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 1, 173–177. MR 1127706, DOI 10.5186/aasfm.1991.1603
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Bodil Branner and Núria Fagella, Quasiconformal surgery in holomorphic dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, Cambridge, 2014. With contributions by Xavier Buff, Shaun Bullett, Adam L. Epstein, Peter Haïssinsky, Christian Henriksen, Carsten L. Petersen, Kevin M. Pilgrim, Tan Lei and Michael Yampolsky. MR 3445628
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Clinton P. Curry, John C. Mayer, Jonathan Meddaugh, and James T. Rogers Jr., Any counterexample to Makienko’s conjecture is an indecomposable continuum, Ergodic Theory Dynam. Systems 29 (2009), no. 3, 875–883. MR 2505320, DOI 10.1017/S014338570800059X
- Clinton P. Curry, John C. Mayer, and E. D. Tymchatyn, Topology and measure of buried points in Julia sets, Fund. Math. 222 (2013), no. 1, 1–17. MR 3080785, DOI 10.4064/fm222-1-1
- Robert L. Devaney and Antonio Garijo, Julia sets converging to the unit disk, Proc. Amer. Math. Soc. 136 (2008), no. 3, 981–988. MR 2361872, DOI 10.1090/S0002-9939-07-09084-3
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367
- Robert L. Devaney, Daniel M. Look, and David Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J. 54 (2005), no. 6, 1621–1634. MR 2189680, DOI 10.1512/iumj.2005.54.2615
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Jianxun Fu and Fei Yang, On the dynamics of a family of singularly perturbed rational maps, J. Math. Anal. Appl. 424 (2015), no. 1, 104–121. MR 3286552, DOI 10.1016/j.jmaa.2014.10.090
- Antonio Garijo, Sebastian M. Marotta, and Elizabeth D. Russell, Singular perturbations in the quadratic family with multiple poles, J. Difference Equ. Appl. 19 (2013), no. 1, 124–145. MR 3020752, DOI 10.1080/10236198.2011.630668
- Sébastien Godillon, A family of rational maps with buried Julia components, Ergodic Theory Dynam. Systems 35 (2015), no. 6, 1846–1879. MR 3377287, DOI 10.1017/etds.2014.22
- Peter Haïssinsky and Kevin M. Pilgrim, Quasisymmetrically inequivalent hyperbolic Julia sets, Rev. Mat. Iberoam. 28 (2012), no. 4, 1025–1034. MR 2990132, DOI 10.4171/RMI/701
- M. Yu. Lyubich, Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk 38 (1983), no. 5(233), 197–198 (Russian). MR 718838
- M. Yu. Lyubich, Dynamics of rational transformations: topological picture, Uspekhi Mat. Nauk 41 (1986), no. 4(250), 35–95, 239 (Russian). MR 863874
- P. M. Makienko, Iterations of analytic functions in $\textbf {C}^*$, Dokl. Akad. Nauk SSSR 297 (1987), no. 1, 35–37 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 3, 418–420. MR 916928
- Sebastian M. Marotta, Singular perturbations in the quadratic family, J. Difference Equ. Appl. 14 (2008), no. 6, 581–595. MR 2417010, DOI 10.1080/10236190701702429
- Curt McMullen, Automorphisms of rational maps, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 31–60. MR 955807, DOI 10.1007/978-1-4613-9602-4_{3}
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Shunsuke Morosawa, On the residual Julia sets of rational functions, Ergodic Theory Dynam. Systems 17 (1997), no. 1, 205–210. MR 1440776, DOI 10.1017/S0143385797069848
- Shunsuke Morosawa, Julia sets of subhyperbolic rational functions, Complex Variables Theory Appl. 41 (2000), no. 2, 151–162. MR 1760168, DOI 10.1080/17476930008815244
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343
- V. A. Naĭshul′, Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in $\textbf {C}^{2}$ and $\textbf {C}P^{2}$, Trudy Moskov. Mat. Obshch. 44 (1982), 235–245 (Russian). MR 656288
- Kevin M. Pilgrim, Rational maps whose Fatou components are Jordan domains, Ergodic Theory Dynam. Systems 16 (1996), no. 6, 1323–1343. MR 1424402, DOI 10.1017/S0143385700010051
- Ricardo Pérez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), no. 2, 243–294. MR 1607557, DOI 10.1007/BF02392745
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- K. M. Pilgrim and L. Tan, On disc-annulus surgery of rational maps, Dynamical systems, Proceedings of the International Conference in Honor of Professor Shantao Liao, World Scientific, Singapore, 1999, pp. 237–250.
- Kevin Pilgrim and Tan Lei, Rational maps with disconnected Julia set, Astérisque 261 (2000), xiv, 349–384 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755447
- Jianyong Qiao, The buried points on the Julia sets of rational and entire functions, Sci. China Ser. A 38 (1995), no. 12, 1409–1419. MR 1381886
- Jianyong Qiao, Topological complexity of Julia sets, Sci. China Ser. A 40 (1997), no. 11, 1158–1165. MR 1613862, DOI 10.1007/BF02931834
- Weiyuan Qiu, Fei Yang, and Yongcheng Yin, Rational maps whose Julia sets are Cantor circles, Ergodic Theory Dynam. Systems 35 (2015), no. 2, 499–529. MR 3316923, DOI 10.1017/etds.2013.53
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140
- Yeshun Sun and Chung-Chun Yang, Buried points and Lakes of Wada continua, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 379–382. MR 1952380, DOI 10.3934/dcds.2003.9.379
- Yingqing Xiao, Weiyuan Qiu, and Yongcheng Yin, On the dynamics of generalized McMullen maps, Ergodic Theory Dynam. Systems 34 (2014), no. 6, 2093–2112. MR 3272785, DOI 10.1017/etds.2013.21
- Fei Yang, Rational maps without Herman rings, Proc. Amer. Math. Soc. 145 (2017), no. 4, 1649–1659. MR 3601556, DOI 10.1090/proc/13336
- Yong Cheng Yin, On the Julia sets of quadratic rational maps, Complex Variables Theory Appl. 18 (1992), no. 3-4, 141–147. MR 1157922
Additional Information
- Youming Wang
- Affiliation: Department of Applied Mathematics, Hunan Agricultural University, Changsha, 410128, People’s Republic of China
- Email: wangym2002@163.com
- Fei Yang
- Affiliation: Department of Mathematics, Nanjing University, Nanjing, 210093, People’s Republic of China
- MR Author ID: 983714
- Email: yangfei@nju.edu.cn
- Received by editor(s): December 14, 2017
- Received by editor(s) in revised form: October 19, 2019, February 22, 2020, and February 26, 2020
- Published electronically: July 29, 2020
- Additional Notes: This work was supported by the National Natural Science Foundation of China (grant No. 11671092), the Natural Science Foundation of Jiangsu Province (No. BK20191246), the Fundamental Research Funds for the Central Universities (grant No. 0203-14380025), and EDF of Hunan Province (grant No. 16C0763).
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 7287-7326
- MSC (2010): Primary 37F45; Secondary 37F10
- DOI: https://doi.org/10.1090/tran/8144
- MathSciNet review: 4155208