## Counting integer points on quadrics with arithmetic weights

HTML articles powered by AMS MathViewer

- by V. Vinay Kumaraswamy PDF
- Trans. Amer. Math. Soc.
**373**(2020), 6929-6959

## Abstract:

Let $F \in \mathbf {Z}[\boldsymbol {x}]$ be a diagonal, non-singular quadratic form in four variables. Let $\lambda (n)$ be the normalised Fourier coefficients of a holomorphic Hecke form of full level. We give an upper bound for the problem of counting integer zeros of $F$ with $|\boldsymbol {x}| \leqslant X$, weighted by $\lambda (x_1)$.## References

- S. Baier and T. D. Browning,
*Inhomogeneous quadratic congruences*. part 2, Funct. Approx. Comment. Math.**47**(2012), no. part 2, 267–286. MR**3051452**, DOI 10.7169/facm/2012.47.2.9 - Valentin Blomer,
*Sums of Hecke eigenvalues over values of quadratic polynomials*, Int. Math. Res. Not. IMRN**16**(2008), Art. ID rnn059. 29. MR**2435749**, DOI 10.1093/imrn/rnn059 - Valentin Blomer and Gergely Harcos,
*Hybrid bounds for twisted $L$-functions*, J. Reine Angew. Math.**621**(2008), 53–79. MR**2431250**, DOI 10.1515/CRELLE.2008.058 - Andrew R. Booker, Micah B. Milinovich, and Nathan Ng,
*Subconvexity for modular form $L$-functions in the $t$ aspect*, Adv. Math.**341**(2019), 299–335. MR**3872849**, DOI 10.1016/j.aim.2018.10.037 - R. de la Bretèche and T. D. Browning,
*Le problème des diviseurs pour des formes binaires de degré 4*, J. Reine Angew. Math.**646**(2010), 1–44 (French, with English summary). MR**2719554**, DOI 10.1515/CRELLE.2010.064 - R. de la Bretèche and T. D. Browning,
*Binary forms as sums of two squares and Châtelet surfaces*, Israel J. Math.**191**(2012), no. 2, 973–1012. MR**3011504**, DOI 10.1007/s11856-012-0019-y - Régis de la Bretèche and Gérald Tenenbaum,
*Moyennes de fonctions arithmétiques de formes binaires*, Mathematika**58**(2012), no. 2, 290–304 (French, with English and French summaries). MR**2965973**, DOI 10.1112/S0025579311002154 - Tim Browning,
*The divisor problem for binary cubic forms*, J. Théor. Nombres Bordeaux**23**(2011), no. 3, 579–602 (English, with English and French summaries). MR**2861076**, DOI 10.5802/jtnb.778 - Stephan Daniel,
*On the divisor-sum problem for binary forms*, J. Reine Angew. Math.**507**(1999), 107–129. MR**1670278**, DOI 10.1515/crll.1999.010 - W. Duke, J. Friedlander, and H. Iwaniec,
*Bounds for automorphic $L$-functions*, Invent. Math.**112**(1993), no. 1, 1–8. MR**1207474**, DOI 10.1007/BF01232422 - Étienne Fouvry, Satadal Ganguly, Emmanuel Kowalski, and Philippe Michel,
*Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions*, Comment. Math. Helv.**89**(2014), no. 4, 979–1014. MR**3284303**, DOI 10.4171/CMH/342 - John Friedlander and Henryk Iwaniec,
*The polynomial $X^2+Y^4$ captures its primes*, Ann. of Math. (2)**148**(1998), no. 3, 945–1040. MR**1670065**, DOI 10.2307/121034 - Jayce R. Getz,
*Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields*, J. Lond. Math. Soc. (2)**98**(2018), no. 2, 275–305. MR**3873109**, DOI 10.1112/jlms.12130 - G. Greaves,
*On the divisor-sum problem for binary cubic forms*, Acta Arith.**17**(1970), 1–28. MR**263761**, DOI 10.4064/aa-17-1-1-28 - D. R. Heath-Brown,
*A new form of the circle method, and its application to quadratic forms*, J. Reine Angew. Math.**481**(1996), 149–206. MR**1421949**, DOI 10.1515/crll.1996.481.149 - D. R. Heath-Brown,
*Primes represented by $x^3+2y^3$*, Acta Math.**186**(2001), no. 1, 1–84. MR**1828372**, DOI 10.1007/BF02392715 - D. R. Heath-Brown,
*Linear relations amongst sums of two squares*, Number theory and algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 303, Cambridge Univ. Press, Cambridge, 2003, pp. 133–176. MR**2053459** - D. R. Heath-Brown and L. B. Pierce,
*Simultaneous integer values of pairs of quadratic forms*, J. Reine Angew. Math.**727**(2017), 85–143. MR**3652248**, DOI 10.1515/crelle-2014-0112 - Christopher Hooley,
*On the number of divisors of a quadratic polynomial*, Acta Math.**110**(1963), 97–114. MR**153648**, DOI 10.1007/BF02391856 - Henryk Iwaniec and Emmanuel Kowalski,
*Analytic number theory*, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR**2061214**, DOI 10.1090/coll/053 - Henry H. Kim,
*Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$*, J. Amer. Math. Soc.**16**(2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR**1937203**, DOI 10.1090/S0894-0347-02-00410-1 - Ritabrata Munshi,
*The circle method and bounds for $L$-functions—I*, Math. Ann.**358**(2014), no. 1-2, 389–401. MR**3158002**, DOI 10.1007/s00208-013-0968-4 - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - Nicolas Templier and Jacob Tsimerman,
*Non-split sums of coefficients of $GL(2)$-automorphic forms*, Israel J. Math.**195**(2013), no. 2, 677–723. MR**3096570**, DOI 10.1007/s11856-012-0112-2 - Kai-Man Tsang and Lilu Zhao,
*On Lagrange’s four squares theorem with almost prime variables*, J. Reine Angew. Math.**726**(2017), 129–171. MR**3641655**, DOI 10.1515/crelle-2014-0094 - G. N. Watson,
*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110**

## Additional Information

**V. Vinay Kumaraswamy**- Affiliation: School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
- MR Author ID: 1288484
- Email: vinay.visw@gmail.com
- Received by editor(s): February 2, 2018
- Received by editor(s) in revised form: June 2, 2019, and October 11, 2019
- Published electronically: August 6, 2020
- Additional Notes: Part of this work was done while the author was a Program Associate in the Analytic Number Theory Program at the Mathematical Sciences Research Institute, Berkeley, USA, during Spring Semester 2017, which was supported by the National Science Foundation under grant no. DMS-1440140.
- © Copyright 2020 by V. Vinay Kumaraswamy
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 6929-6959 - MSC (2010): Primary 11F30, 11P55; Secondary 11E20
- DOI: https://doi.org/10.1090/tran/8154
- MathSciNet review: 4155196