Betti tables of monomial ideals fixed by permutations of the variables
HTML articles powered by AMS MathViewer
- by Satoshi Murai PDF
- Trans. Amer. Math. Soc. 373 (2020), 7087-7107 Request permission
Abstract:
Let $S_n$ be a polynomial ring with $n$ variables over a field and $\{I_n\}_{n \geq 1}$ a chain of ideals such that each $I_n$ is a monomial ideal of $S_n$ fixed by permutations of the variables. In this paper, we present a way to determine all nonzero positions of Betti tables of $I_n$ for all large intergers $n$ from the $\mathbb Z^m$-graded Betti tables of $I_m$ for some small integers $m$. Our main result shows that the projective dimension and the regularity of $I_n$ eventually become linear functions on $n$, confirming a special case of conjectures posed by Le, Nagel, Nguyen and Römer.References
- M. Aschenbrenner and C. Hillar, Finite generation of symmetric ideals, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5171–5192, DOI 10.1090/S0002-9947-07-04116-5; Trans. Amer. Math. Soc. 361 (2009), no. 10, 5627 (Erratum), DOI 10.1090/S0002-9947-09-05028-4.
- Dave Bayer, Irena Peeva, and Bernd Sturmfels, Monomial resolutions, Math. Res. Lett. 5 (1998), no. 1-2, 31–46. MR 1618363, DOI 10.4310/MRL.1998.v5.n1.a3
- J. Biermann, H. de Alba Casillas, F. Galetto, S. Murai, A. O’Keefe, T. Römer and A. Seceleanu, Betti numbers of symmetric shifted ideals, J. Algebra 560 (2020), 312-342. DOI 10.1016/j.jalgebra.2020.04.037.
- Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910. MR 3357185, DOI 10.1215/00127094-3120274
- Jan Draisma, Noetherianity up to symmetry, Combinatorial algebraic geometry, Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 33–61. MR 3329086, DOI 10.1007/978-3-319-04870-3_{2}
- F. Galetto, On the ideal generated by all squarefree monomials of a given degree, J. Commut. Algebra, to appear.
- D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/
- Jürgen Herzog and Takayuki Hibi, Monomial ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London, Ltd., London, 2011. MR 2724673, DOI 10.1007/978-0-85729-106-6
- Christopher J. Hillar and Seth Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math. 229 (2012), no. 1, 1–25. MR 2854168, DOI 10.1016/j.aim.2011.08.009
- June Huh and Botong Wang, Enumeration of points, lines, planes, etc, Acta Math. 218 (2017), no. 2, 297–317. MR 3733101, DOI 10.4310/ACTA.2017.v218.n2.a2
- D.V. Le, U. Nagel, H.D. Nguyen, T. Römer, Castelnuovo-Mumford regularity up to symmetry, Int. Math. Res. Not. IMRN, to appear.
- D.V. Le, U. Nagel, H.D. Nguyen, T. Römer, Codimension and projective dimension up to symmetry, Math. Nachr., to appear.
- Toshiaki Maeno and Yasuhide Numata, Sperner property and finite-dimensional Gorenstein algebras associated to matroids, J. Commut. Algebra 8 (2016), no. 4, 549–570. MR 3566530, DOI 10.1216/JCA-2016-8-4-549
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- Ezra Miller, Bernd Sturmfels, and Kohji Yanagawa, Generic and cogeneric monomial ideals, J. Symbolic Comput. 29 (2000), no. 4-5, 691–708. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769661, DOI 10.1006/jsco.1999.0290
- Uwe Nagel and Tim Römer, FI- and OI-modules with varying coefficients, J. Algebra 535 (2019), 286–322. MR 3979092, DOI 10.1016/j.jalgebra.2019.06.029
- C. Raicu, Regularity of $S_n$-invariant monomial ideals, arXiv:1909.04650.
- Steven V. Sam and Andrew Snowden, Introduction to twisted commutative algebras, arXiv:1209.5122.
- Steven V. Sam and Andrew Snowden, GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc. 368 (2016), no. 2, 1097–1158. MR 3430359, DOI 10.1090/tran/6355
- Andrew Snowden, Syzygies of Segre embeddings and $\Delta$-modules, Duke Math. J. 162 (2013), no. 2, 225–277. MR 3018955, DOI 10.1215/00127094-1962767
- Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR 666554
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- Junzo Watanabe and Kohji Yanagawa, Vandermonde determinantal ideals, Math. Scand. 125 (2019), no. 2, 179–184. MR 4031045, DOI 10.7146/math.scand.a-114906
Additional Information
- Satoshi Murai
- Affiliation: Department of Mathematics, Faculty of Education, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku, Tokyo 169-8050, Japan
- MR Author ID: 800440
- Email: s-murai@waseda.jp
- Received by editor(s): August 5, 2019
- Received by editor(s) in revised form: January 7, 2020
- Published electronically: August 5, 2020
- Additional Notes: The research of the author was partially supported by KAKENHI 16K05102.
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 7087-7107
- MSC (2010): Primary 13D02; Secondary 13A50
- DOI: https://doi.org/10.1090/tran/8159
- MathSciNet review: 4155201