## Bounded and divergent trajectories and expanding curves on homogeneous spaces

HTML articles powered by AMS MathViewer

- by Osama Khalil PDF
- Trans. Amer. Math. Soc.
**373**(2020), 7473-7525 Request permission

## Abstract:

Suppose $g_t$ is a $1$-parameter $\mathrm {Ad}$-diagonalizable subgroup of a Lie group $G$ and $\Gamma < G$ is a lattice. We study the dimension of bounded and divergent orbits of $g_t$ emanating from a class of curves lying on leaves of the unstable foliation of $g_t$ on the homogeneous space $G/\Gamma$. We obtain sharp upper bounds on the Hausdorff dimension of divergent on average orbits and show that the set of bounded orbits is winning in the sense of Schmidt (and, hence, has full dimension). The class of curves we study is roughly characterized by being tangent to copies of $\mathrm {SL}(2,\mathbb {R})$ inside $G$, which are not contained in a proper parabolic subgroup of $G$.

We describe applications of our results to problems in Diophantine approximation by number fields and intrinsic Diophantine approximation on spheres. Our methods also yield the following result for lines in the space of square systems of linear forms: suppose $\varphi (s) = sY + Z$ where $Y\in \mathrm {GL}(n,\mathbb {R})$ and $Z\in M_{n,n}(\mathbb {R})$. Then, the dimension of the set of points $s$ such that $\varphi (s)$ is singular is at most $1/2$ while badly approximable points have Hausdorff dimension equal to $1$.

## References

- H. Al-Saqban, P. Apisa, A. Erchenko, O. Khalil, S. Mirzadeh, and C. Uyanik,
*Exceptional directions for the Teichmüller geodesic flow and Hausdorff dimension*, Journal of the European Math. Soc. (to appear) (2017). - Menny Aka, Emmanuel Breuillard, Lior Rosenzweig, and Nicolas de Saxcé,
*Diophantine approximation on matrices and Lie groups*, Geom. Funct. Anal.**28**(2018), no. 1, 1–57. MR**3777412**, DOI 10.1007/s00039-018-0436-0 - Jinpeng An, Victor Beresnevich, and Sanju Velani,
*Badly approximable points on planar curves and winning*, Adv. Math.**324**(2018), 148–202. MR**3733884**, DOI 10.1016/j.aim.2017.11.009 - C. S. Aravinda,
*Bounded geodesics and Hausdorff dimension*, Math. Proc. Cambridge Philos. Soc.**116**(1994), no. 3, 505–511. MR**1291756**, DOI 10.1017/S0305004100072777 - Victor Beresnevich,
*Badly approximable points on manifolds*, Invent. Math.**202**(2015), no. 3, 1199–1240. MR**3425389**, DOI 10.1007/s00222-015-0586-8 - Victor Beresnevich, Dmitry Kleinbock, and Gregory Margulis,
*Non-planarity and metric Diophantine approximation for systems of linear forms*, J. Théor. Nombres Bordeaux**27**(2015), no. 1, 1–31 (English, with English and French summaries). MR**3346961** - Yann Bugeaud and Michel Laurent,
*Exponents of Diophantine approximation and Sturmian continued fractions*, Ann. Inst. Fourier (Grenoble)**55**(2005), no. 3, 773–804 (English, with English and French summaries). MR**2149403** - Armand Borel,
*Introduction aux groupes arithmétiques*, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR**0244260** - Armand Borel,
*Linear algebraic groups*, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR**1102012**, DOI 10.1007/978-1-4612-0941-6 - Nicolas Bourbaki,
*Lie groups and Lie algebras. Chapters 4–6*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR**1890629**, DOI 10.1007/978-3-540-89394-3 - Dzmitry Badziahin, Andrew Pollington, and Sanju Velani,
*On a problem in simultaneous Diophantine approximation: Schmidt’s conjecture*, Ann. of Math. (2)**174**(2011), no. 3, 1837–1883. MR**2846492**, DOI 10.4007/annals.2011.174.3.9 - Yves Benoist and Jean-Francois Quint,
*Random walks on finite volume homogeneous spaces*, Invent. Math.**187**(2012), no. 1, 37–59. MR**2874934**, DOI 10.1007/s00222-011-0328-5 - Yitwah Cheung and Nicolas Chevallier,
*Hausdorff dimension of singular vectors*, Duke Math. J.**165**(2016), no. 12, 2273–2329. MR**3544282**, DOI 10.1215/00127094-3477021 - Jonathan Chaika, Yitwah Cheung, and Howard Masur,
*Winning games for bounded geodesics in moduli spaces of quadratic differentials*, J. Mod. Dyn.**7**(2013), no. 3, 395–427. MR**3296560**, DOI 10.3934/jmd.2013.7.395 - Yitwah Cheung,
*Hausdorff dimension of the set of points on divergent trajectories of a homogeneous flow on a product space*, Ergodic Theory Dynam. Systems**27**(2007), no. 1, 65–85. MR**2297087**, DOI 10.1017/S0143385706000678 - Yitwah Cheung,
*Hausdorff dimension of the set of singular pairs*, Ann. of Math. (2)**173**(2011), no. 1, 127–167. MR**2753601**, DOI 10.4007/annals.2011.173.1.4 - S. G. Dani,
*Divergent trajectories of flows on homogeneous spaces and Diophantine approximation*, J. Reine Angew. Math.**359**(1985), 55–89. MR**794799**, DOI 10.1515/crll.1985.359.55 - S. G. Dani,
*Bounded orbits of flows on homogeneous spaces*, Comment. Math. Helv.**61**(1986), no. 4, 636–660. MR**870710**, DOI 10.1007/BF02621936 - S. G. Dani,
*On badly approximable numbers, Schmidt games and bounded orbits of flows*, Number theory and dynamical systems (York, 1987) London Math. Soc. Lecture Note Ser., vol. 134, Cambridge Univ. Press, Cambridge, 1989, pp. 69–86. MR**1043706**, DOI 10.1017/CBO9780511661983.006 - S. G. Dani and G. A. Margulis,
*Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces*, Proc. Indian Acad. Sci. Math. Sci.**101**(1991), no. 1, 1–17. MR**1101994**, DOI 10.1007/BF02872005 - Manfred Einsiedler, Anish Ghosh, and Beverly Lytle,
*Badly approximable vectors, $C^1$ curves and number fields*, Ergodic Theory Dynam. Systems**36**(2016), no. 6, 1851–1864. MR**3530469**, DOI 10.1017/etds.2014.146 - Alex Eskin and Howard Masur,
*Asymptotic formulas on flat surfaces*, Ergodic Theory Dynam. Systems**21**(2001), no. 2, 443–478. MR**1827113**, DOI 10.1017/S0143385701001225 - Alex Eskin and Gregory Margulis,
*Recurrence properties of random walks on finite volume homogeneous manifolds*, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 431–444. MR**2087794**, DOI 10.1016/s0169-5983(04)00042-5 - Alex Eskin, Gregory Margulis, and Shahar Mozes,
*Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture*, Ann. of Math. (2)**147**(1998), no. 1, 93–141. MR**1609447**, DOI 10.2307/120984 - Alex Eskin, Maryam Mirzakhani, and Amir Mohammadi,
*Isolation, equidistribution, and orbit closures for the $\textrm {SL}(2,\Bbb R)$ action on moduli space*, Ann. of Math. (2)**182**(2015), no. 2, 673–721. MR**3418528**, DOI 10.4007/annals.2015.182.2.7 - H. Garland and M. S. Raghunathan,
*Fundamental domains for lattices in (R-)rank $1$ semisimple Lie groups*, Ann. of Math. (2)**92**(1970), 279–326. MR**267041**, DOI 10.2307/1970838 - S. Kadyrov, D. Kleinbock, E. Lindenstrauss, and G. A. Margulis,
*Singular systems of linear forms and non-escape of mass in the space of lattices*, J. Anal. Math.**133**(2017), 253–277. MR**3736492**, DOI 10.1007/s11854-017-0033-4 - Dmitry Kleinbock, Elon Lindenstrauss, and Barak Weiss,
*On fractal measures and Diophantine approximation*, Selecta Math. (N.S.)**10**(2004), no. 4, 479–523. MR**2134453**, DOI 10.1007/s00029-004-0378-2 - D. Y. Kleinbock and G. A. Margulis,
*Flows on homogeneous spaces and Diophantine approximation on manifolds*, Ann. of Math. (2)**148**(1998), no. 1, 339–360. MR**1652916**, DOI 10.2307/120997 - Dmitry Kleinbock and Keith Merrill,
*Rational approximation on spheres*, Israel J. Math.**209**(2015), no. 1, 293–322. MR**3430242**, DOI 10.1007/s11856-015-1219-z - Dmitry Kleinbock, Gregory Margulis, and Junbo Wang,
*Metric Diophantine approximation for systems of linear forms via dynamics*, Int. J. Number Theory**6**(2010), no. 5, 1139–1168. MR**2679461**, DOI 10.1142/S1793042110003423 - S. Kadyrov and A. Pohl,
*Amount of failure of upper-semicontinuity of entropy in non-compact rank-one situations, and Hausdorff dimension*, Ergodic Theory Dynam. Systems**37**(2017), no. 2, 539–563. MR**3614037**, DOI 10.1017/etds.2015.55 - Dmitry Kleinbock and Barak Weiss,
*Bounded geodesics in moduli space*, Int. Math. Res. Not.**30**(2004), 1551–1560. MR**2049831**, DOI 10.1155/S1073792804133412 - Dmitry Kleinbock and Barak Weiss,
*Modified Schmidt games and Diophantine approximation with weights*, Adv. Math.**223**(2010), no. 4, 1276–1298. MR**2581371**, DOI 10.1016/j.aim.2009.09.018 - Dmitry Kleinbock and Barak Weiss,
*Modified Schmidt games and a conjecture of Margulis*, J. Mod. Dyn.**7**(2013), no. 3, 429–460. MR**3296561**, DOI 10.3934/jmd.2013.7.429 - Howard Masur,
*Hausdorff dimension of the set of nonergodic foliations of a quadratic differential*, Duke Math. J.**66**(1992), no. 3, 387–442. MR**1167101**, DOI 10.1215/S0012-7094-92-06613-0 - Dave Witte Morris,
*Introduction to arithmetic groups*, Deductive Press, [place of publication not identified], 2015. MR**3307755** - Wolfgang M. Schmidt,
*On badly approximable numbers and certain games*, Trans. Amer. Math. Soc.**123**(1966), 178–199. MR**195595**, DOI 10.1090/S0002-9947-1966-0195595-4 - Wolfgang M. Schmidt,
*Badly approximable systems of linear forms*, J. Number Theory**1**(1969), 139–154. MR**248090**, DOI 10.1016/0022-314X(69)90032-8 - Nimish A. Shah,
*Asymptotic evolution of smooth curves under geodesic flow on hyperbolic manifolds*, Duke Math. J.**148**(2009), no. 2, 281–304. MR**2524497**, DOI 10.1215/00127094-2009-027 - Nimish A. Shah,
*Equidistribution of expanding translates of curves and Dirichlet’s theorem on Diophantine approximation*, Invent. Math.**177**(2009), no. 3, 509–532. MR**2534098**, DOI 10.1007/s00222-009-0186-6 - Nimish A. Shah,
*Limiting distributions of curves under geodesic flow on hyperbolic manifolds*, Duke Math. J.**148**(2009), no. 2, 251–279. MR**2524496**, DOI 10.1215/00127094-2009-026 - Nimish A. Shah,
*Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms*, J. Amer. Math. Soc.**23**(2010), no. 2, 563–589. MR**2601043**, DOI 10.1090/S0894-0347-09-00657-2 - R. Shi,
*Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space*, ArXiv e-prints (2014). - George Tomanov and Barak Weiss,
*Closed orbits for actions of maximal tori on homogeneous spaces*, Duke Math. J.**119**(2003), no. 2, 367–392. MR**1997950**, DOI 10.1215/S0012-7094-03-11926-2 - Adrián Ubis,
*Effective equidistribution of translates of large submanifolds in semisimple homogeneous spaces*, Int. Math. Res. Not. IMRN**18**(2017), 5629–5666. MR**3704742**, DOI 10.1093/imrn/rnw179 - B. Weiss,
*Divergent trajectories on noncompact parameter spaces*, Geom. Funct. Anal.**14**(2004), no. 1, 94–149. MR**2053601**, DOI 10.1007/s00039-004-0453-z

## Additional Information

**Osama Khalil**- Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174
- MR Author ID: 1310466
- ORCID: 0000-0002-0728-2069
- Email: khalil.37@osu.edu
- Received by editor(s): November 7, 2018
- Received by editor(s) in revised form: March 25, 2020
- Published electronically: August 5, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 7473-7525 - MSC (2010): Primary 37A17, 22F30, 11J83
- DOI: https://doi.org/10.1090/tran/8161
- MathSciNet review: 4155214