Volterra integral equations of the first kind and applications to linear diffusions
HTML articles powered by AMS MathViewer
- by Jacek Jakubowski and Maciej Wiśniewolski PDF
- Trans. Amer. Math. Soc. 373 (2020), 7455-7472 Request permission
Abstract:
An algebraic formula for the solution of a Volterra integral equation of the first kind is given in the topological algebra of locally integrable functions using the notions of convolution triple and $\phi$-deconvolution. Then, the formula is applied to problems from the theory of linear diffusions. In particular, the distributions of first hitting times, killed processes, and bridges are described.References
- A. V. Bitsadze, Integral equations of first kind, Series on Soviet and East European Mathematics, vol. 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1370929, DOI 10.1142/9789812796431
- Kamil Bogus and Jacek Małecki, Sharp estimates of transition probability density for Bessel process in half-line, Potential Anal. 43 (2015), no. 1, 1–22. MR 3361787, DOI 10.1007/s11118-015-9461-x
- Lennart Bondesson, Classes of infinitely divisible distributions and densities, Z. Wahrsch. Verw. Gebiete 57 (1981), no. 1, 39–71. MR 623454, DOI 10.1007/BF00533713
- Andrei N. Borodin and Paavo Salminen, Handbook of Brownian motion—facts and formulae, 2nd ed., Probability and its Applications, Birkhäuser Verlag, Basel, 2002. MR 1912205, DOI 10.1007/978-3-0348-8163-0
- Endre Csáki, Antónia Földes, and Paavo Salminen, On the joint distribution of the maximum and its location for a linear diffusion, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, 179–194 (English, with French summary). MR 891709
- O. Diekmann and S. A. van Gils, Invariant manifolds for Volterra integral equations of convolution type, J. Differential Equations 54 (1984), no. 2, 139–180. MR 757290, DOI 10.1016/0022-0396(84)90156-6
- Eqworld - The World of Mathematical Equations, http://eqworld.ipmnet.ru/index.htm
- Avner Friedman and Marvin Shinbrot, Volterra integral equations in Banach space, Trans. Amer. Math. Soc. 126 (1967), 131–179. MR 206754, DOI 10.1090/S0002-9947-1967-0206754-7
- G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319, DOI 10.1017/CBO9780511662805
- Yuji Hamana and Hiroyuki Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Ind. 4B (2012), 91–95. MR 3072321
- Yuji Hamana and Hiroyuki Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5237–5257. MR 3074372, DOI 10.1090/S0002-9947-2013-05799-6
- Integral calculator, http://www.integral-calculator.com
- ItĂ´ K., McKean H. P., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1995.
- John T. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw. Gebiete 52 (1980), no. 3, 309–319. MR 576891, DOI 10.1007/BF00538895
- John T. Kent, The spectral decomposition of a diffusion hitting time, Ann. Probab. 10 (1982), no. 1, 207–219. MR 637387
- John S. Lew, On linear Volterra integral equations of convolution type, Proc. Amer. Math. Soc. 35 (1972), 450–456. MR 308699, DOI 10.1090/S0002-9939-1972-0308699-8
- M. A. NaÄmark, Normed rings, P. Noordhoff N. V., Groningen, 1959. Translated from the first Russian edition by Leo F. Boron. MR 0110956
- Jim Pitman and Marc Yor, Bessel processes and infinitely divisible laws, Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980) Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 285–370. MR 620995
- Jim Pitman and Marc Yor, Decomposition at the maximum for excursions and bridges of one-dimensional diffusions, Itô’s stochastic calculus and probability theory, Springer, Tokyo, 1996, pp. 293–310. MR 1439532
- Jim Pitman and Marc Yor, A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete 59 (1982), no. 4, 425–457. MR 656509, DOI 10.1007/BF00532802
- Jim Pitman and Marc Yor, The law of the maximum of a Bessel bridge, Electron. J. Probab. 4 (1999), no. 15, 35. MR 1701890, DOI 10.1214/EJP.v4-52
- Polyanin A. D., Manzhirov A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 2008.
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer, (3rd ed.), 2005.
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1987. ItĂ´ calculus. MR 921238
- Paavo Salminen, Pierre Vallois, and Marc Yor, On the excursion theory for linear diffusions, Jpn. J. Math. 2 (2007), no. 1, 97–127. MR 2295612, DOI 10.1007/s11537-007-0662-y
- Srivastava H. M., Buschman R.G., Theory and Applications of Convolution Integral Equations, Springer, Netherlands, 1992.
- E. C. Titchmarsh, The Zeros of Certain Integral Functions, Proc. London Math. Soc. (2) 25 (1926), 283–302. MR 1575285, DOI 10.1112/plms/s2-25.1.283
- Matsuyo Tomisaki, On the asymptotic behaviors of transition probability densities of one-dimensional diffusion processes, Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 3, 819–834. MR 0448589, DOI 10.2977/prims/1195190380
- Vito Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publications, Inc., New York, 1959. With a preface by G. C. Evans, a biography of Vito Volterra and a bibliography of his published works by E. Whittaker. MR 0100765
- David Williams, Path decomposition and continuity of local time for one-dimensional diffusions. I, Proc. London Math. Soc. (3) 28 (1974), 738–768. MR 350881, DOI 10.1112/plms/s3-28.4.738
Additional Information
- Jacek Jakubowski
- Affiliation: Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- MR Author ID: 93145
- ORCID: 0000-0002-9621-7129
- Email: jakub@mimuw.edu.pl
- Maciej Wiśniewolski
- Affiliation: Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- MR Author ID: 986971
- Email: m.wisniewolski@mimuw.edu.pl
- Received by editor(s): May 28, 2017
- Received by editor(s) in revised form: October 11, 2018, June 6, 2019, February 10, 2020, and March 19, 2020
- Published electronically: July 29, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 7455-7472
- MSC (2010): Primary 45D05, 60J25, 60G40
- DOI: https://doi.org/10.1090/tran/8169
- MathSciNet review: 4155213