Thermodynamic formalism and integral means spectrum of logarithmic tracts for transcendental entire functions
HTML articles powered by AMS MathViewer
- by Volker Mayer and Mariusz Urbański PDF
- Trans. Amer. Math. Soc. 373 (2020), 7669-7711 Request permission
Abstract:
We provide an entirely new approach to the theory of thermodynamic formalism for entire functions of bounded type. The key point is that we introduce an integral means spectrum for logarithmic tracts which takes care of the fractal behavior of the boundary of the tract near infinity. It turns out that this spectrum behaves well as soon as the tracts have some sufficiently nice geometry which, for example, is the case for quasidisks, John, or Hölder tracts. In these cases we get a good control of the corresponding transfer operators, leading to full thermodynamic formalism along with its applications such as exponential decay of correlations, central limit theorem, and a Bowen’s formula for the Hausdorff dimension of radial Julia sets.
This approach covers all entire functions for which thermodynamic formalism has been so far established and goes far beyond. It applies, in particular, to every hyperbolic function from any Erëmenko–Lyubich analytic family of Speiser class $\mathcal {S}$ provided this family contains at least one function with Hölder tracts. The latter is, for example, the case if the family contains a Poincaré linearizer.
References
- Krzysztof Barański, Hausdorff dimension and measures on Julia sets of some meromorphic maps, Fund. Math. 147 (1995), no. 3, 239–260. MR 1348721
- Krzysztof Barański, Trees and hairs for some hyperbolic entire maps of finite order, Math. Z. 257 (2007), no. 1, 33–59. MR 2318569, DOI 10.1007/s00209-007-0114-7
- Krzysztof Barański, Bogusława Karpińska, and Anna Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, Int. Math. Res. Not. IMRN 4 (2009), 615–624. MR 2480096, DOI 10.1093/imrn/rnn141
- Krzysztof Barański, Bogusława Karpińska, and Anna Zdunik, Bowen’s formula for meromorphic functions, Ergodic Theory Dynam. Systems 32 (2012), no. 4, 1165–1189. MR 2955309, DOI 10.1017/S0143385711000290
- Tim Bedford, Albert M. Fisher, and Mariusz Urbański, The scenery flow for hyperbolic Julia sets, Proc. London Math. Soc. (3) 85 (2002), no. 2, 467–492. MR 1912058, DOI 10.1112/S002461150201362X
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Walter Bergweiler and Alexandre Eremenko, Direct singularities and completely invariant domains of entire functions, Illinois J. Math. 52 (2008), no. 1, 243–259. MR 2507243
- I. Binder, N. Makarov, and S. Smirnov, Harmonic measure and polynomial Julia sets, Duke Math. J. 117 (2003), no. 2, 343–365. MR 1971297, DOI 10.1215/S0012-7094-03-11725-1
- Christopher J. Bishop, Models for the Eremenko-Lyubich class, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 202–221. MR 3384512, DOI 10.1112/jlms/jdv021
- Christopher J. Bishop, Models for the Speiser class, Proc. Lond. Math. Soc. (3) 114 (2017), no. 5, 765–797. MR 3653246, DOI 10.1112/plms.12025
- Lennart Carleson, Peter W. Jones, and Jean-Christophe Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 1, 1–30. MR 1274760, DOI 10.1007/BF01232933
- David Drasin and Yûsuke Okuyama, Singularities of Schröder maps and unhyperbolicity of rational functions, Comput. Methods Funct. Theory 8 (2008), no. 1-2, 285–302. MR 2419479, DOI 10.1007/BF03321689
- Alexandre Dezotti and Lasse Rempe-Gillen, Measurable transcendental dynamics, eventual hyperbolic dimension and the Poincaré functions of polynomials, preprint.
- Adam Epstein and Lasse Rempe-Gillen, On invariance of order and the area property for finite-type entire functions, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 573–599. MR 3409693, DOI 10.5186/aasfm.2015.4034
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353–361. MR 148884
- Jacek Graczyk and Stas Smirnov, Collet, Eckmann and Hölder, Invent. Math. 133 (1998), no. 1, 69–96. MR 1626469, DOI 10.1007/s002220050239
- J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 467–511. MR 1215974
- Janina Kotus and Mariusz Urbański, Hausdorff dimension and Hausdorff measures of Julia sets of elliptic functions, Bull. London Math. Soc. 35 (2003), no. 2, 269–275. MR 1952406, DOI 10.1112/S0024609302001686
- Janina Kotus and Mariusz Urbański, Conformal, geometric and invariant measures for transcendental expanding functions, Math. Ann. 324 (2002), no. 3, 619–656. MR 1938460, DOI 10.1007/s00208-002-0356-y
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- N. G. Makarov, Fine structure of harmonic measure, Algebra i Analiz 10 (1998), no. 2, 1–62; English transl., St. Petersburg Math. J. 10 (1999), no. 2, 217–268. MR 1629379
- Volker Mayer, A lower bound of the hyperbolic dimension for meromorphic functions having a logarithmic Hölder tract, Conform. Geom. Dyn. 22 (2018), 62–77. MR 3817965, DOI 10.1090/ecgd/320
- Volker Mayer and Mariusz Urbański, Geometric thermodynamic formalism and real analyticity for meromorphic functions of finite order, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 915–946. MR 2422021, DOI 10.1017/S0143385707000648
- Volker Mayer and Mariusz Urbański, Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order, Mem. Amer. Math. Soc. 203 (2010), no. 954, vi+107. MR 2590263, DOI 10.1090/S0065-9266-09-00577-8
- Volker Mayer and Mariusz Urbański, Random dynamics of transcendental functions, J. Anal. Math. 134 (2018), no. 1, 201–235. MR 3771481, DOI 10.1007/s11854-018-0007-1
- Volker Mayer, Mariusz Urbański, and Anna Zdunik, Real Analyticity for random dynamics of transcendental functions, preprint, 2016.
- Javad Mashreghi, Representation theorems in Hardy spaces, London Mathematical Society Student Texts, vol. 74, Cambridge University Press, Cambridge, 2009. MR 2500010, DOI 10.1017/CBO9780511814525
- Helena Mihaljević-Brandt and Jörn Peter, Poincaré functions with spiders’ webs, Proc. Amer. Math. Soc. 140 (2012), no. 9, 3193–3205. MR 2917092, DOI 10.1090/S0002-9939-2012-11164-5
- R. Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften, Band 46, Springer-Verlag, Berlin-New York, 1974 (German). Zweite Auflage; Reprint. MR 0344426
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Feliks Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2081–2099. MR 1615954, DOI 10.1090/S0002-9947-99-02195-9
- Feliks Przytycki and Juan Rivera-Letelier, Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys. 301 (2011), no. 3, 661–707. MR 2784276, DOI 10.1007/s00220-010-1158-9
- Feliks Przytycki, Juan Rivera-Letelier, and Stanislav Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), no. 1, 29–63. MR 1943741, DOI 10.1007/s00222-002-0243-x
- Feliks Przytycki, Juan Rivera-Letelier, and Stanislav Smirnov, Equality of pressures for rational functions, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 891–914. MR 2062924, DOI 10.1017/S0143385703000385
- Feliks Przytycki and Mariusz Urbański, Conformal fractals: ergodic theory methods, London Mathematical Society Lecture Note Series, vol. 371, Cambridge University Press, Cambridge, 2010. MR 2656475, DOI 10.1017/CBO9781139193184
- Lasse Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1411–1420. MR 2465667, DOI 10.1090/S0002-9939-08-09650-0
- Lasse Rempe, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), no. 2, 235–267. MR 2570071, DOI 10.1007/s11511-009-0042-y
- Lasse Rempe-Gillen, Hyperbolic entire functions with full hyperbolic dimension and approximation by Eremenko-Lyubich functions, Proc. Lond. Math. Soc. (3) 108 (2014), no. 5, 1193–1225. MR 3214678, DOI 10.1112/plms/pdt048
- Lasse Rempe-Gillen, Arc-like continua, Julia sets of entire functions and Eremenko’s conjecture, preprint, 2016.
- Lasse Rempe-Gillen and Dave Sixsmith, Hyperbolic entire functions and the Eremenko-Lyubich class: class $\mathcal {B}$ or not class $\mathcal {B}$?, Math. Z. 286 (2017), no. 3-4, 783–800. MR 3671560, DOI 10.1007/s00209-016-1784-9
- Günter Rottenfusser, Johannes Rückert, Lasse Rempe, and Dierk Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77–125. MR 2753600, DOI 10.4007/annals.2011.173.1.3
- Mariusz Urbański and Anna Zdunik, The finer geometry and dynamics of the hyperbolic exponential family, Michigan Math. J. 51 (2003), no. 2, 227–250. MR 1992945, DOI 10.1307/mmj/1060013195
- Mariusz Urbański and Anna Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 279–315. MR 2041272, DOI 10.1017/S0143385703000208
- G. Valiron, Sur les fonctions entières d’ordre nul et d’ordre fini et en particulier les fonctions à correspondance régulière, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3) 5 (1913), 117–257 (French). MR 1508338, DOI 10.5802/afst.287
- Anna Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), no. 3, 627–649. MR 1032883, DOI 10.1007/BF01234434
Additional Information
- Volker Mayer
- Affiliation: UFR de Mathématiques, Université de Lille, UMR 8524 du CNRS, 59655 Villeneuve d’Ascq Cedex, France
- MR Author ID: 333982
- Email: volker.mayer@univ-lille.fr
- Mariusz Urbański
- Affiliation: Department of Mathematics, University of North Texas, Denton, Texas 76203-1430
- Email: urbanski@unt.edu
- Received by editor(s): May 6, 2019
- Received by editor(s) in revised form: October 21, 2019
- Published electronically: September 9, 2020
- Additional Notes: The research of the second-named author was supported in part by the Simons Grant 581668.
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 7669-7711
- MSC (2010): Primary 30D05, 37D35; Secondary 37F10, 37F45, 28A80
- DOI: https://doi.org/10.1090/tran/8043
- MathSciNet review: 4169671