Frobenius line invariance of algebraic $K$-theory
HTML articles powered by AMS MathViewer
- by Oliver Braunling PDF
- Trans. Amer. Math. Soc. 373 (2020), 8197-8217 Request permission
Abstract:
The $K$-theory of smooth schemes is $\mathbf {A}^{1}$-invariant. We show that this remains true over finite fields if one replaces the affine line by the Frobenius line, i.e., the non-commutative algebra where multiplication with the variable behaves like the Frobenius. Emerton had shown that over regular rings the Frobenius line is left coherent. As a technical ingredient for our theorem, but also of independent interest, we extend this and show that merely assuming finite type (or just $F$-finite), the Frobenius line is right coherent.References
- Manuel Blickle and Gebhard Böckle, Cartier modules: finiteness results, J. Reine Angew. Math. 661 (2011), 85–123. MR 2863904, DOI 10.1515/CRELLE.2011.087
- Kenneth S. Brown and Stephen M. Gersten, Algebraic $K$-theory as generalized sheaf cohomology, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 266–292. MR 0347943
- P. M. Cohn, Algebra. Vol. 3, 2nd ed., John Wiley & Sons, Ltd., Chichester, 1991. MR 1098018
- P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, Cambridge, 1995. Theory of general division rings. MR 1349108, DOI 10.1017/CBO9781139087193
- Rankeya Datta and Karen E. Smith, Excellence in prime characteristic, Local and global methods in algebraic geometry, Contemp. Math., vol. 712, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 105–116. MR 3832401, DOI 10.1090/conm/712/14344
- Matthew Emerton and Mark Kisin, The Riemann-Hilbert correspondence for unit $F$-crystals, Astérisque 293 (2004), vi+257 (English, with English and French summaries). MR 2071510
- M. Emerton, On a class of coherent rings, with applications to the smooth representation theory of $GL_{2}$ in characteristic $p$, unpublished (2008), available as: http://www.math.uchicago.edu/\symbol {126}emerton/pdffiles/frob.pdf.
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- S. M. Gersten, $K$-theory of free rings, Comm. Algebra 1 (1974), 39–64. MR 396671, DOI 10.1080/00927877408548608
- Daniel R. Grayson, $K$-theory and localization of noncommutative rings, J. Pure Appl. Algebra 18 (1980), no. 2, 125–127. MR 585217, DOI 10.1016/0022-4049(80)90123-1
- Daniel R. Grayson, The $K$-theory of semilinear endomorphisms, J. Algebra 113 (1988), no. 2, 358–372. MR 929766, DOI 10.1016/0021-8693(88)90165-2
- J. F. Jardine, Generalised sheaf cohomology theories, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 29–68. MR 2061851, DOI 10.1007/978-94-007-0948-5_{2}
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- Linquan Ma, The category of $F$-modules has finite global dimension, J. Algebra 402 (2014), 1–20. MR 3160413, DOI 10.1016/j.jalgebra.2013.12.008
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Revised edition, Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR 1811901, DOI 10.1090/gsm/030
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Jean-Pierre Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455–472 (French). MR 260799, DOI 10.1016/0021-8693(70)90050-5
- Christophe Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (2004), no. 1, 217–244, 312 (French, with English and Russian summaries). MR 2074990, DOI 10.17323/1609-4514-2004-4-1-217-244
- Stacks, Stacks Project, http://stacks.math.columbia.edu, 2016.
- Richard G. Swan, K-theory of coherent rings, J. Algebra Appl. 18 (2019), no. 9, 1950161, 16. MR 3981694, DOI 10.1142/S0219498819501615
- Charles A. Weibel, The $K$-book, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013. An introduction to algebraic $K$-theory. MR 3076731, DOI 10.1090/gsm/145
- Charles Weibel and Dongyuan Yao, Localization for the $K$-theory of noncommutative rings, Algebraic $K$-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989) Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 219–230. MR 1156514, DOI 10.1090/conm/126/00513
- Yuji Yoshino, Skew-polynomial rings of Frobenius type and the theory of tight closure, Comm. Algebra 22 (1994), no. 7, 2473–2502. MR 1271618, DOI 10.1080/00927879408824972
Additional Information
- Oliver Braunling
- Affiliation: Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, D-79104 Freiburg im Breisgau, Germany
- MR Author ID: 1036829
- ORCID: 0000-0003-4845-7934
- Received by editor(s): March 7, 2018
- Received by editor(s) in revised form: October 10, 2019, and April 10, 2020
- Published electronically: August 28, 2020
- Additional Notes: The author was supported by the GK1821 “Cohomological Methods in Geometry”and the Freiburg Institute for Advanced Studies (FRIAS)
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 8197-8217
- MSC (2010): Primary 19F27, 14F30
- DOI: https://doi.org/10.1090/tran/8231
- MathSciNet review: 4169686