The split torsor method for Manin’s conjecture
Authors:
Ulrich Derenthal and Marta Pieropan
Journal:
Trans. Amer. Math. Soc. 373 (2020), 8485-8524
MSC (2010):
Primary 11D45; Secondary 11G35, 14G05
DOI:
https://doi.org/10.1090/tran/8133
Published electronically:
September 29, 2020
MathSciNet review:
4177266
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce the split torsor method to count rational points of bounded height on Fano varieties. As an application, we prove Manin’s conjecture for all nonsplit quartic del Pezzo surfaces of type $\mathbf {A}_{3}+\mathbf {A}_{1}$ over arbitrary number fields. The counting problem on the split torsor is solved in the framework of o-minimal structures.
- Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. MR 3307753
- William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608
- Emil Artin and John Tate, Class field theory, AMS Chelsea Publishing, Providence, RI, 2009. Reprinted with corrections from the 1967 original. MR 2467155
- R. de la Bretèche and T. D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree four. II, Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 3, 579–605. MR 2373960, DOI https://doi.org/10.1017/S0305004107000205
- R. De la Bretèche and T. D. Browning, Manin’s conjecture for quartic del Pezzo surfaces with a conic fibration, Duke Math. J. 160 (2011), no. 1, 1–69. MR 2838351, DOI https://doi.org/10.1215/00127094-1443466
- R. de la Bretèche and T. D. Browning, Binary forms as sums of two squares and Châtelet surfaces, Israel J. Math. 191 (2012), no. 2, 973–1012. MR 3011504, DOI https://doi.org/10.1007/s11856-012-0019-y
- Régis de la Bretèche, Tim Browning, and Emmanuel Peyre, On Manin’s conjecture for a family of Châtelet surfaces, Ann. of Math. (2) 175 (2012), no. 1, 297–343. MR 2874644, DOI https://doi.org/10.4007/annals.2012.175.1.8
- Régis de la Bretèche and Étienne Fouvry, L’éclaté du plan projectif en quatre points dont deux conjugués, J. Reine Angew. Math. 576 (2004), 63–122 (French, with English summary). MR 2099200, DOI https://doi.org/10.1515/crll.2004.091
- David Bourqui, La conjecture de Manin géométrique pour une famille de quadriques intrinsèques, Manuscripta Math. 135 (2011), no. 1-2, 1–41 (French, with English and French summaries). MR 2783385, DOI https://doi.org/10.1007/s00229-010-0403-z
- Jörg Brüdern, Einführung in die analytische Zahlentheorie, Springer-Verlag, Berlin, 1995.
- Victor V. Batyrev and Yuri Tschinkel, Manin’s conjecture for toric varieties, J. Algebraic Geom. 7 (1998), no. 1, 15–53. MR 1620682
- Régis de la Bretèche and Gérald Tenenbaum, Sur la conjecture de Manin pour certaines surfaces de Châtelet, J. Inst. Math. Jussieu 12 (2013), no. 4, 759–819 (French, with English and French summaries). MR 3103132, DOI https://doi.org/10.1017/S1474748012000886
- Fabrizio Barroero and Martin Widmer, Counting lattice points and O-minimal structures, Int. Math. Res. Not. IMRN 18 (2014), 4932–4957. MR 3264671, DOI https://doi.org/10.1093/imrn/rnt102
- Antoine Chambert-Loir and Yuri Tschinkel, On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148 (2002), no. 2, 421–452. MR 1906155, DOI https://doi.org/10.1007/s002220100200
- D. F. Coray and M. A. Tsfasman, Arithmetic on singular Del Pezzo surfaces, Proc. London Math. Soc. (3) 57 (1988), no. 1, 25–87. MR 940430, DOI https://doi.org/10.1112/plms/s3-57.1.25
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402, DOI https://doi.org/10.1215/S0012-7094-87-05420-2
- Ulrich Derenthal, Andreas-Stephan Elsenhans, and Jörg Jahnel, On the factor alpha in Peyre’s constant, Math. Comp. 83 (2014), no. 286, 965–977. MR 3143700, DOI https://doi.org/10.1090/S0025-5718-2013-02772-X
- Ulrich Derenthal, Counting integral points on universal torsors, Int. Math. Res. Not. IMRN 14 (2009), 2648–2699. MR 2520770, DOI https://doi.org/10.1093/imrn/rnp030
- Ulrich Derenthal, Singular del Pezzo surfaces whose universal torsors are hypersurfaces, Proc. Lond. Math. Soc. (3) 108 (2014), no. 3, 638–681. MR 3180592, DOI https://doi.org/10.1112/plms/pdt041
- Kevin Destagnol, La conjecture de Manin pour certaines surfaces de Châtelet, Acta Arith. 174 (2016), no. 1, 31–97 (French). MR 3517531, DOI https://doi.org/10.4064/aa8312-2-2016
- Ulrich Derenthal and Christopher Frei, Counting imaginary quadratic points via universal torsors, Compos. Math. 150 (2014), no. 10, 1631–1678. MR 3269462, DOI https://doi.org/10.1112/S0010437X13007902
- Ulrich Derenthal and Christopher Frei, Counting imaginary quadratic points via universal torsors, II, Math. Proc. Cambridge Philos. Soc. 156 (2014), no. 3, 383–407. MR 3181632, DOI https://doi.org/10.1017/S0305004113000728
- Ulrich Derenthal, Michael Joyce, and Zachariah Teitler, The nef cone volume of generalized del Pezzo surfaces, Algebra Number Theory 2 (2008), no. 2, 157–182. MR 2377367, DOI https://doi.org/10.2140/ant.2008.2.157
- U. Derenthal and D. Loughran, Singular del Pezzo surfaces that are equivariant compactifications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), no. Issledovaniya po Teorii Chisel. 10, 26–43, 241 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 171 (2010), no. 6, 714–724. MR 2753646, DOI https://doi.org/10.1007/s10958-010-0174-9
- Ulrich Derenthal and Daniel Loughran, Equivariant compactifications of two-dimensional algebraic groups, Proc. Edinb. Math. Soc. (2) 58 (2015), no. 1, 149–168. MR 3333982, DOI https://doi.org/10.1017/S001309151400042X
- Ulrich Derenthal and Marta Pieropan, Cox rings over nonclosed fields, J. Lond. Math. Soc. (2) 99 (2019), no. 2, 447–476. MR 3939263, DOI https://doi.org/10.1112/jlms.12178
- Jens Franke, Yuri I. Manin, and Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), no. 2, 421–435. MR 974910, DOI https://doi.org/10.1007/BF01393904
- Christopher Frei and Marta Pieropan, O-minimality on twisted universal torsors and Manin’s conjecture over number fields, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, 757–811 (English, with English and French summaries). MR 3552013, DOI https://doi.org/10.24033/asens.2295
- H. Heilbronn, Zeta-functions and $L$-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 204–230. MR 0218327
- Edmund Landau, Über Ideale und Primideale in Idealklassen, Math. Z. 2 (1918), no. 1-2, 52–154 (German). MR 1544310, DOI https://doi.org/10.1007/BF01212899
- Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
- Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859
- Emmanuel Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), no. 1, 101–218 (French). MR 1340296, DOI https://doi.org/10.1215/S0012-7094-95-07904-6
- Emmanuel Peyre, Points de hauteur bornée, topologie adélique et mesures de Tamagawa, J. Théor. Nombres Bordeaux 15 (2003), no. 1, 319–349 (French, with English and French summaries). Les XXIIèmes Journées Arithmetiques (Lille, 2001). MR 2019019
- Marta Pieropan, Torsors and generalized Cox rings for Manin’s conjecture, Ph.D. thesis, Leibniz Universität Hannover, 2015.
- Emmanuel Peyre and Yuri Tschinkel, Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comp. 70 (2001), no. 233, 367–387. MR 1681100, DOI https://doi.org/10.1090/S0025-5718-00-01189-3
- Michael Rosen, A generalization of Mertens’ theorem, J. Ramanujan Math. Soc. 14 (1999), no. 1, 1–19. MR 1700882
- J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR 0344216
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., Graduate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015. Translated from the 2008 French edition by Patrick D. F. Ion. MR 3363366
- Eckart Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1–8. MR 667459, DOI https://doi.org/10.1515/crll.1982.335.1
- A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), no. 4, 1051–1094. MR 1398816, DOI https://doi.org/10.1090/S0894-0347-96-00216-0
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11D45, 11G35, 14G05
Retrieve articles in all journals with MSC (2010): 11D45, 11G35, 14G05
Additional Information
Ulrich Derenthal
Affiliation:
Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Welfengarten 1, 30167 Hannover, Germany
MR Author ID:
776744
Email:
derenthal@math.uni-hannover.de
Marta Pieropan
Affiliation:
Utrecht University, Mathematical Institute, Budapestlaan 6, 3584 CD Utrecht, the Netherlands
MR Author ID:
1166273
Email:
m.pieropan@uu.nl
Received by editor(s):
July 22, 2019
Received by editor(s) in revised form:
February 5, 2020
Published electronically:
September 29, 2020
Additional Notes:
The first author was partly supported by grant DE 1646/4-2 of the Deutsche Forschungsgemeinschaft. Some of this work was done while he was on sabbatical leave at the University of Oxford.
The second author was partly supported by grant ES 60/10-1 of the Deutsche Forschungsgemeinschaft.
Article copyright:
© Copyright 2020
by the authors