Bounds on the torsion subgroups of Néron–Severi groups
HTML articles powered by AMS MathViewer
- by Hyuk Jun Kweon PDF
- Trans. Amer. Math. Soc. 374 (2021), 351-365 Request permission
Abstract:
Let $X \hookrightarrow \mathbb {P}^r$ be a smooth projective variety defined by homogeneous polynomials of degree $\leq d$. We give an explicit upper bound on the order of the torsion subgroup $(\operatorname {NS} X)_{\mathrm {tor}}$ of the Néron–Severi group of $X$. The bound is derived from an explicit upper bound on the number of irreducible components of the scheme $\operatorname {\mathbf {CDiv}}_n X$ parametrizing the effective Cartier divisors of degree $n$ on $X$. We also give an upper bound on the number of generators of $(\operatorname {NS} X)[\ell ^\infty ]$ uniform as $\ell \neq \mathrm {char} k$ varies.References
- M. Baldassarri, Algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 12, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. MR 0082172, DOI 10.1007/978-3-642-52761-6
- Indranil Biswas and Yogish I. Holla, Comparison of fundamental group schemes of a projective variety and an ample hypersurface, J. Algebraic Geom. 16 (2007), no. 3, 547–597. MR 2306280, DOI 10.1090/S1056-3911-07-00449-3
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Fabrizio Catanese, Chow varieties, Hilbert schemes and moduli spaces of surfaces of general type, J. Algebraic Geom. 1 (1992), no. 4, 561–595. MR 1174902
- Gerd Gotzmann, Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978), no. 1, 61–70 (German). MR 480478, DOI 10.1007/BF01214566
- Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $(SGA$ $2)$, North-Holland Publishing Co., Amsterdam; Masson & Cie, Editeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics, Vol. 2. MR 0476737
- Lucio Guerra, Complexity of Chow varieties and number of morphisms on surfaces of general type, Manuscripta Math. 98 (1999), no. 1, 1–8. MR 1669619, DOI 10.1007/s002290050120
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Joos Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci. 24 (1983), no. 3, 239–277. MR 716823, DOI 10.1016/0304-3975(83)90002-6
- Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999. Appendix C by Iarrobino and Steven L. Kleiman. MR 1735271, DOI 10.1007/BFb0093426
- Jun-ichi Igusa, On some problems in abstract algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 964–967. MR 74085, DOI 10.1073/pnas.41.11.964
- Luc Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501–661 (French). MR 565469, DOI 10.24033/asens.1374
- Nicholas M. Katz, Sums of Betti numbers in arbitrary characteristic, Finite Fields Appl. 7 (2001), no. 1, 29–44. Dedicated to Professor Chao Ko on the occasion of his 90th birthday. MR 1803934, DOI 10.1006/ffta.2000.0303
- Dennis S. Keeler, Fujita’s conjecture and Frobenius amplitude, Amer. J. Math. 130 (2008), no. 5, 1327–1336. MR 2450210, DOI 10.1353/ajm.0.0015
- Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. MR 206009, DOI 10.2307/1970447
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- André Néron, Problèmes arithmétiques et géométriques rattachés à la notion de rang d’une courbe algébrique dans un corps, Bull. Soc. Math. France 80 (1952), 101–166 (French). MR 56951, DOI 10.24033/bsmf.1427
- Madhav V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 2, 73–122. MR 682517, DOI 10.1007/BF02967978
- Bjorn Poonen, Damiano Testa, and Ronald van Luijk, Computing Néron-Severi groups and cycle class groups, Compos. Math. 151 (2015), no. 4, 713–734. MR 3334893, DOI 10.1112/S0010437X14007878
- Francesco Severi, La base per le varietà algebriche di dimensione qualunque contenuta in una data, e la teoria generate delle corrispondénze fra i punti di due superficie algebriche, Mem. R. Accad. Italia 5 (1933), 239–283.
- Alexei N. Skorobogatov and Yuri G. Zarhin, A finiteness theorem for the Brauer group of abelian varieties and $K3$ surfaces, J. Algebraic Geom. 17 (2008), no. 3, 481–502. MR 2395136, DOI 10.1090/S1056-3911-07-00471-7
- Jakob Stix, Injectivity in the section conjecture, Springer, Berlin-Heidelberg, 2013, pp. 69–79.
- Jakob Stix, Rational points and arithmetic of fundamental groups, Lecture Notes in Mathematics, vol. 2054, Springer, Heidelberg, 2013. Evidence for the section conjecture. MR 2977471, DOI 10.1007/978-3-642-30674-7
Additional Information
- Hyuk Jun Kweon
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
- MR Author ID: 1038786
- ORCID: 0000-0002-3056-1306
- Email: kweon@mit.edu
- Received by editor(s): November 30, 2019
- Received by editor(s) in revised form: January 18, 2020, April 3, 2020, and April 11, 2020
- Published electronically: September 29, 2020
- Additional Notes: This research was partially supported by Samsung Scholarship and National Science Foundation grant DMS-1601946.
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 351-365
- MSC (2010): Primary 14C05; Secondary 14C20, 14C22
- DOI: https://doi.org/10.1090/tran/8203
- MathSciNet review: 4188186