Contact structures, CR Yamabe invariant, and connected sum
Author:
Gautier Dietrich
Journal:
Trans. Amer. Math. Soc. 374 (2021), 881-897
MSC (2020):
Primary 53D10
DOI:
https://doi.org/10.1090/tran/8081
Published electronically:
November 18, 2020
MathSciNet review:
4196381
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We propose a global invariant $\sigma _c$ for contact manifolds which admit a strictly pseudoconvex CR structure, analogous to the Yamabe invariant $\sigma$. We prove that this invariant is non-decreasing under handle attaching and under connected sum. We then give a lower bound on $\sigma _c$ in a particular case.
- D. M. Burns Jr. and C. L. Epstein, A global invariant for three-dimensional CR-manifolds, Invent. Math. 92 (1988), no. 2, 333–348. MR 936085, DOI https://doi.org/10.1007/BF01404456
- Florin Alexandru Belgun, Normal CR structures on compact 3-manifolds, Math. Z. 238 (2001), no. 3, 441–460. MR 1869692, DOI https://doi.org/10.1007/s002090100260
- L. Bérard Bergery. Scalar curvature and isometry group. In Proceedings of the France-Japan Seminar on Spectra of Riemannian Manifolds and Space of Metrics of Manifolds, pages 9–28, 1983.
- Olivier Biquard and Yann Rollin, Wormholes in ACH Einstein manifolds, Trans. Amer. Math. Soc. 361 (2009), no. 4, 2021–2046. MR 2465828, DOI https://doi.org/10.1090/S0002-9947-08-04778-8
- Jih-Hsin Cheng and Hung-Lin Chiu, Connected sum of spherical CR manifolds with positive CR Yamabe constant, J. Geom. Anal. 29 (2019), no. 4, 3113–3123. MR 4015430, DOI https://doi.org/10.1007/s12220-018-00107-w
- J.-H. Cheng, H.-L. Chiu, and P. T. Ho. Connected sum of CR manifolds with positive CR Yamabe constant. Journal of Geometric Analysis, pages 1–14, 2019.
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI https://doi.org/10.1007/BF02392146
- Jih-Hsin Cheng, Andrea Malchiodi, and Paul Yang, A positive mass theorem in three dimensional Cauchy-Riemann geometry, Adv. Math. 308 (2017), 276–347. MR 3600060, DOI https://doi.org/10.1016/j.aim.2016.12.012
- Jih-Hsin Cheng and I-Hsun Tsai, Deformation of spherical CR structures and the universal Picard variety, Comm. Anal. Geom. 8 (2000), no. 2, 301–346. MR 1753320, DOI https://doi.org/10.4310/CAG.2000.v8.n2.a3
- Jeffrey S. Case and Paul Yang, A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), no. 3, 285–322. MR 3135070
- Najoua Gamara, The CR Yamabe conjecture—the case $n=1$, J. Eur. Math. Soc. (JEMS) 3 (2001), no. 2, 105–137. MR 1831872, DOI https://doi.org/10.1007/PL00011303
- Najoua Gamara and Ridha Yacoub, CR Yamabe conjecture—the conformally flat case, Pacific J. Math. 201 (2001), no. 1, 121–175. MR 1867895, DOI https://doi.org/10.2140/pjm.2001.201.121
- David Jerison and John M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), no. 2, 167–197. MR 880182
- David Jerison and John M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), no. 2, 303–343. MR 982177
- Osamu Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), no. 2, 253–265. MR 919505, DOI https://doi.org/10.1007/BF01461722
- Claude LeBrun, Four-manifolds without Einstein metrics, Math. Res. Lett. 3 (1996), no. 2, 133–147. MR 1386835, DOI https://doi.org/10.4310/MRL.1996.v3.n2.a1
- Claude LeBrun, Kodaira dimension and the Yamabe problem, Comm. Anal. Geom. 7 (1999), no. 1, 133–156. MR 1674105, DOI https://doi.org/10.4310/CAG.1999.v7.n1.a5
- John M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), no. 1, 157–178. MR 926742, DOI https://doi.org/10.2307/2374543
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI https://doi.org/10.1090/S0273-0979-1987-15514-5
- Taiji Marugame, Renormalized Chern-Gauss-Bonnet formula for complete Kähler-Einstein metrics, Amer. J. Math. 138 (2016), no. 4, 1067–1094. MR 3538151, DOI https://doi.org/10.1353/ajm.2016.0034
- Jimmy Petean, Computations of the Yamabe invariant, Math. Res. Lett. 5 (1998), no. 6, 703–709. MR 1671183, DOI https://doi.org/10.4310/MRL.1998.v5.n6.a1
- Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
- Richard M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations (Montecatini Terme, 1987) Lecture Notes in Math., vol. 1365, Springer, Berlin, 1989, pp. 120–154. MR 994021, DOI https://doi.org/10.1007/BFb0089180
- Yun Shi and Wei Wang, On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of ${\rm Sp}(n+1,1)$, Ann. Global Anal. Geom. 49 (2016), no. 3, 271–307. MR 3485987, DOI https://doi.org/10.1007/s10455-015-9492-y
- Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. MR 0399517
- Wei Wang, Canonical contact forms on spherical CR manifolds, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 3, 245–273. MR 2002214, DOI https://doi.org/10.1007/s10097-003-0050-8
- Xiaodong Wang, On a remarkable formula of Jerison and Lee in CR geometry, Math. Res. Lett. 22 (2015), no. 1, 279–299. MR 3342188, DOI https://doi.org/10.4310/MRL.2015.v22.n1.a14
- S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geometry 13 (1978), no. 1, 25–41. MR 520599
- Chin-Tung Wu, Evolution of CR Yamabe constant under the Cartan flow on a CR 3-manifold, Taiwanese J. Math. 13 (2009), no. 5, 1433–1439. MR 2554467, DOI https://doi.org/10.11650/twjm/1500405550
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 53D10
Retrieve articles in all journals with MSC (2020): 53D10
Additional Information
Gautier Dietrich
Affiliation:
Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Case courrier 051, Place Eugène Bataillon, 34090 Montpellier, France; and Université Paul-Valéry Montpellier 3
Email:
gautier.dietrich@ac-toulouse.fr
Received by editor(s):
December 6, 2018
Received by editor(s) in revised form:
October 21, 2019, and December 17, 2019
Published electronically:
November 18, 2020
Additional Notes:
The author was supported in part by the grant ANR-17-CE40-0034 of the French National Research Agency ANR (project CCEM)
Article copyright:
© Copyright 2020
American Mathematical Society