Contact structures, CR Yamabe invariant, and connected sum
Author:
Gautier Dietrich
Journal:
Trans. Amer. Math. Soc. 374 (2021), 881-897
MSC (2020):
Primary 53D10
DOI:
https://doi.org/10.1090/tran/8081
Published electronically:
November 18, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We propose a global invariant for contact manifolds which admit a strictly pseudoconvex CR structure, analogous to the Yamabe invariant
. We prove that this invariant is non-decreasing under handle attaching and under connected sum. We then give a lower bound on
in a particular case.
- [BE88] D. M. Burns Jr. and C. L. Epstein, A global invariant for three-dimensional CR-manifolds, Invent. Math. 92 (1988), no. 2, 333–348. MR 936085, https://doi.org/10.1007/BF01404456
- [Bel01] Florin Alexandru Belgun, Normal CR structures on compact 3-manifolds, Math. Z. 238 (2001), no. 3, 441–460. MR 1869692, https://doi.org/10.1007/s002090100260
- [Ber83]
L. Bérard Bergery.
Scalar curvature and isometry group.
In Proceedings of the France-Japan Seminar on Spectra of Riemannian Manifolds and Space of Metrics of Manifolds, pages 9-28, 1983. - [BR09] Olivier Biquard and Yann Rollin, Wormholes in ACH Einstein manifolds, Trans. Amer. Math. Soc. 361 (2009), no. 4, 2021–2046. MR 2465828, https://doi.org/10.1090/S0002-9947-08-04778-8
- [CC19] Jih-Hsin Cheng and Hung-Lin Chiu, Connected sum of spherical CR manifolds with positive CR Yamabe constant, J. Geom. Anal. 29 (2019), no. 4, 3113–3123. MR 4015430, https://doi.org/10.1007/s12220-018-00107-w
- [CCH19]
J.-H. Cheng, H.-L. Chiu, and P. T. Ho.
Connected sum of CR manifolds with positive CR Yamabe constant.
Journal of Geometric Analysis, pages 1-14, 2019. - [CM74] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, https://doi.org/10.1007/BF02392146
- [CMY17] Jih-Hsin Cheng, Andrea Malchiodi, and Paul Yang, A positive mass theorem in three dimensional Cauchy-Riemann geometry, Adv. Math. 308 (2017), 276–347. MR 3600060, https://doi.org/10.1016/j.aim.2016.12.012
- [CT00] Jih-Hsin Cheng and I-Hsun Tsai, Deformation of spherical CR structures and the universal Picard variety, Comm. Anal. Geom. 8 (2000), no. 2, 301–346. MR 1753320, https://doi.org/10.4310/CAG.2000.v8.n2.a3
- [CY13] Jeffrey S. Case and Paul Yang, A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), no. 3, 285–322. MR 3135070
- [Gam01] Najoua Gamara, The CR Yamabe conjecture—the case 𝑛=1, J. Eur. Math. Soc. (JEMS) 3 (2001), no. 2, 105–137. MR 1831872, https://doi.org/10.1007/PL00011303
- [GY01] Najoua Gamara and Ridha Yacoub, CR Yamabe conjecture—the conformally flat case, Pacific J. Math. 201 (2001), no. 1, 121–175. MR 1867895, https://doi.org/10.2140/pjm.2001.201.121
- [JL87] David Jerison and John M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), no. 2, 167–197. MR 880182
- [JL89] David Jerison and John M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), no. 2, 303–343. MR 982177
- [Kob87] Osamu Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), no. 2, 253–265. MR 919505, https://doi.org/10.1007/BF01461722
- [LeB96] Claude LeBrun, Four-manifolds without Einstein metrics, Math. Res. Lett. 3 (1996), no. 2, 133–147. MR 1386835, https://doi.org/10.4310/MRL.1996.v3.n2.a1
- [LeB99] Claude LeBrun, Kodaira dimension and the Yamabe problem, Comm. Anal. Geom. 7 (1999), no. 1, 133–156. MR 1674105, https://doi.org/10.4310/CAG.1999.v7.n1.a5
- [Lee88] John M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), no. 1, 157–178. MR 926742, https://doi.org/10.2307/2374543
- [LP87] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, https://doi.org/10.1090/S0273-0979-1987-15514-5
- [Mar15] Taiji Marugame, Renormalized Chern-Gauss-Bonnet formula for complete Kähler-Einstein metrics, Amer. J. Math. 138 (2016), no. 4, 1067–1094. MR 3538151, https://doi.org/10.1353/ajm.2016.0034
- [Pet98] Jimmy Petean, Computations of the Yamabe invariant, Math. Res. Lett. 5 (1998), no. 6, 703–709. MR 1671183, https://doi.org/10.4310/MRL.1998.v5.n6.a1
- [Sch84] Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
- [Sch89] Richard M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations (Montecatini Terme, 1987) Lecture Notes in Math., vol. 1365, Springer, Berlin, 1989, pp. 120–154. MR 994021, https://doi.org/10.1007/BFb0089180
- [SW16] Yun Shi and Wei Wang, On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of 𝑆𝑝(𝑛+1,1), Ann. Global Anal. Geom. 49 (2016), no. 3, 271–307. MR 3485987, https://doi.org/10.1007/s10455-015-9492-y
- [Tan75] Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. MR 0399517
- [Wan03] Wei Wang, Canonical contact forms on spherical CR manifolds, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 3, 245–273. MR 2002214, https://doi.org/10.1007/s10097-003-0050-8
- [Wan15] Xiaodong Wang, On a remarkable formula of Jerison and Lee in CR geometry, Math. Res. Lett. 22 (2015), no. 1, 279–299. MR 3342188, https://doi.org/10.4310/MRL.2015.v22.n1.a14
- [Web78] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geometry 13 (1978), no. 1, 25–41. MR 520599
- [Wu09] Chin-Tung Wu, Evolution of CR Yamabe constant under the Cartan flow on a CR 3-manifold, Taiwanese J. Math. 13 (2009), no. 5, 1433–1439. MR 2554467, https://doi.org/10.11650/twjm/1500405550
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 53D10
Retrieve articles in all journals with MSC (2020): 53D10
Additional Information
Gautier Dietrich
Affiliation:
Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Case courrier 051, Place Eugène Bataillon, 34090 Montpellier, France; and Université Paul-Valéry Montpellier 3
Email:
gautier.dietrich@ac-toulouse.fr
DOI:
https://doi.org/10.1090/tran/8081
Received by editor(s):
December 6, 2018
Received by editor(s) in revised form:
October 21, 2019, and December 17, 2019
Published electronically:
November 18, 2020
Additional Notes:
The author was supported in part by the grant ANR-17-CE40-0034 of the French National Research Agency ANR (project CCEM)
Article copyright:
© Copyright 2020
American Mathematical Society