On the Riemann-Roch formula without projective hypotheses
HTML articles powered by AMS MathViewer
- by A. Navarro and J. Navarro PDF
- Trans. Amer. Math. Soc. 374 (2021), 755-772
Abstract:
Let $S$ be a finite dimensional noetherian scheme. For any proper morphism between smooth $S$-schemes, we prove a Riemann-Roch formula relating higher algebraic $K$-theory and motivic cohomology, thus with no projective hypotheses either on the schemes or on the morphism. We also prove, without projective assumptions, an arithmetic Riemann-Roch theorem involving Arakelov’s higher $K$-theory and motivic cohomology as well as an analogous result for the relative cohomology of a morphism.
These results are obtained as corollaries of a motivic statement that is valid for morphisms between oriented absolute spectra in the stable homotopy category of $S$.
References
- Joseph Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque 314 (2007), x+466 pp. (2008) (French, with English and French summaries). MR 2423375
- Paul Baum, William Fulton, and Robert MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 101–145. MR 412190
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI 10.1016/0001-8708(86)90081-2
- Armand Borel and Jean-Pierre Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97–136 (French). MR 116022
- Denis-Charles Cisinski, Descente par éclatements en $K$-théorie invariante par homotopie, Ann. of Math. (2) 177 (2013), no. 2, 425–448 (French, with English and French summaries). MR 3010804, DOI 10.4007/annals.2013.177.2.2
- Denis-Charles Cisinski and Frédéric Déglise, Triangulated categories of mixed motives, Springer Monographs in Mathematics, Springer, Cham, [2019] ©2019. MR 3971240, DOI 10.1007/978-3-030-33242-6
- Denis-Charles Cisinski and Frédéric Déglise, Mixed Weil cohomologies, Adv. Math. 230 (2012), no. 1, 55–130. MR 2900540, DOI 10.1016/j.aim.2011.10.021
- Frédéric Déglise, Around the Gysin triangle. II, Doc. Math. 13 (2008), 613–675. MR 2466188
- Frédéric Déglise, Orientation theory in arithmetic geometry, $K$-Theory—Proceedings of the International Colloquium, Mumbai, 2016, Hindustan Book Agency, New Delhi, 2018, pp. 239–347. MR 3930052
- Frédéric Déglise, Bivariant theories in motivic stable homotopy, Doc. Math. 23 (2018), 997–1076. MR 3874952
- P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177 (French). MR 902592, DOI 10.1090/conm/067/902592
- E. Dyer, Relations between cohomology theories, Colloquium on Algebraic Topology, Aarthus Universitet, 1962, pp. 89–93.
- William Fulton and Henri Gillet, Riemann-Roch for general algebraic varieties, Bull. Soc. Math. France 111 (1983), no. 3, 287–300 (English, with French summary). MR 735307
- William Fulton, A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties, Compositio Math. 34 (1977), no. 3, 279–283. MR 460323
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- William Fulton and Robert MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165. MR 609831, DOI 10.1090/memo/0243
- Henri Gillet, Comparison of $K$-theory spectral sequences, with applications, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin-New York, 1981, pp. 141–167. MR 618303, DOI 10.1007/BFb0089520
- Henri Gillet, Riemann-Roch theorems for higher algebraic $K$-theory, Adv. in Math. 40 (1981), no. 3, 203–289. MR 624666, DOI 10.1016/S0001-8708(81)80006-0
- Andreas Holmstrom and Jakob Scholbach, Arakelov motivic cohomology I, J. Algebraic Geom. 24 (2015), no. 4, 719–754. MR 3383602, DOI 10.1090/jag/648
- Jin Fangzhou, Borel-Moore motivic homology and weight structure on mixed motives, Math. Z. 283 (2016), no. 3-4, 1149–1183. MR 3519998, DOI 10.1007/s00209-016-1636-7
- F. Jin, Quelques aspects sur l’homologie de Borel-Moore dans le cadre de l’homotopie motivique : poids et $G$-théorie de Quillen, PhD Dissertation, E.N.S. de Lyon, 2016.
- F. Jin, Algebraic $G$-theory in motivic homotopy categories, arXiv:1806.03927, 2018.
- M. Levine, $K$-theory and motivic cohomology of schemes, I, https://www.uni-due.de/~bm0032/publ/KthyMotI12.01.pdf.
- Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. MR 1811558
- M. Levine and F. Morel, Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2286826
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224
- J. A. Navarro González, Cálculo de las clases de Chern de los esquemas lisos y singulares, PhD Dissertation, Universidad de Salamanca, 1981.
- Alberto Navarro, On Grothendieck’s Riemann-Roch theorem, Expo. Math. 35 (2017), no. 3, 326–342. MR 3689905, DOI 10.1016/j.exmath.2016.09.005
- A. Navarro, Riemann-Roch for homotopy invariant $K$-theory and Gysin morphisms, Adv. Math. 328 (2018), 501–554. MR 3771136, DOI 10.1016/j.aim.2018.01.001
- I. Panin, Oriented cohomology theories of algebraic varieties, $K$-Theory 30 (2003), no. 3, 265–314. Special issue in honor of Hyman Bass on his seventieth birthday. Part III. MR 2064242, DOI 10.1023/B:KTHE.0000019788.33790.cb
- I. Panin, Riemann-Roch theorems for oriented cohomology, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 261–333. MR 2061857, DOI 10.1007/978-94-007-0948-5_{8}
- Ivan Panin, Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov), Homology Homotopy Appl. 11 (2009), no. 1, 349–405. MR 2529164
- Ivan Panin, Konstantin Pimenov, and Oliver Röndigs, A universality theorem for Voevodsky’s algebraic cobordism spectrum, Homology Homotopy Appl. 10 (2008), no. 2, 211–226. MR 2475610
- Ivan Panin, Konstantin Pimenov, and Oliver Röndigs, On the relation of Voevodsky’s algebraic cobordism to Quillen’s $K$-theory, Invent. Math. 175 (2009), no. 2, 435–451. MR 2470112, DOI 10.1007/s00222-008-0155-5
- Joël Riou, Algebraic $K$-theory, $\textbf {A}^1$-homotopy and Riemann-Roch theorems, J. Topol. 3 (2010), no. 2, 229–264. MR 2651359, DOI 10.1112/jtopol/jtq005
- M. Artin, A. Grothendieck, J-L Verdier, eds: Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 3 (PDF). Lecture Notes in Mathematics (in French). 305. Berlin; New York: Springer-Verlag. pp. vi+640 (1972).
- P. Berthelot, A. Grothendieck, L. Illusie: Séminaire de Géométrie Algébrique du Bois Marie — 1966–67 — Théorie des intersections et théorème de Riemann-Roch — (SGA 6). Lecture notes in mathematics, vol. 225 (1971)
- Markus Spitzweck, A commutative $\Bbb P^1$-spectrum representing motivic cohomology over Dedekind domains, Mém. Soc. Math. Fr. (N.S.) 157 (2018), 110. MR 3865569, DOI 10.24033/msmf.465
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Vladimir Voevodsky, $\mathbf A^1$-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 579–604. MR 1648048
Additional Information
- A. Navarro
- Affiliation: Departamento de Matemática Aplicada, E.T.S. de Arquitectura, Universidad Politéc- nica de Madrid, 28040 Madrid, Spain
- MR Author ID: 946466
- J. Navarro
- Affiliation: Departamento de Matemáticas, Universidad de Extremadura, 06006 Badajoz, Spain
- MR Author ID: 846164
- ORCID: 0000-0001-5257-176X
- Received by editor(s): March 1, 2018
- Received by editor(s) in revised form: September 9, 2019
- Published electronically: November 3, 2020
- Additional Notes: The first author was supported by MTM2016-79400-P (MINECO)
The second author was supported by grants GR18001 and IB18087 - © Copyright 2020 by the authors
- Journal: Trans. Amer. Math. Soc. 374 (2021), 755-772
- MSC (2010): Primary 14C40, 14F42, 19E15, 19E20, 19L10
- DOI: https://doi.org/10.1090/tran/8107
- MathSciNet review: 4196376
Dedicated: To our father