Ancient solutions to curve shortening with finite total curvature
HTML articles powered by AMS MathViewer
- by Sigurd Angenent and Qian You PDF
- Trans. Amer. Math. Soc. 374 (2021), 863-880 Request permission
Abstract:
We construct ancient solutions to curve shortening in the plane whose total curvature is uniformly bounded by gluing together an arbitrary chain of given grim reapers along their common asymptotes.References
- Dylan J. Altschuler, Steven J. Altschuler, Sigurd B. Angenent, and Lani F. Wu, The zoo of solitons for curve shortening in $\Bbb R^n$, Nonlinearity 26 (2013), no. 5, 1189–1226. MR 3043378, DOI 10.1088/0951-7715/26/5/1189
- Steven J. Altschuler, Shortening space curves, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 45–51. MR 1216610
- Sigurd Angenent, Parabolic equations for curves on surfaces. I. Curves with $p$-integrable curvature, Ann. of Math. (2) 132 (1990), no. 3, 451–483. MR 1078266, DOI 10.2307/1971426
- Sigurd B. Angenent, Shrinking doughnuts, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989) Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 21–38. MR 1167827
- Kenneth A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, N.J., 1978. MR 0485012
- Panagiota Daskalopoulos, Richard Hamilton, and Natasa Sesum, Classification of compact ancient solutions to the curve shortening flow, J. Differential Geom. 84 (2010), no. 3, 455–464. MR 2669361
- L. C. Evans and J. Spruck, Motion of level sets by mean curvature. III, J. Geom. Anal. 2 (1992), no. 2, 121–150. MR 1151756, DOI 10.1007/BF02921385
- Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285–314. MR 906392
- N. Hungerbühler and K. Smoczyk, Soliton solutions for the mean curvature flow, Differential Integral Equations 13 (2000), no. 10-12, 1321–1345. MR 1787070
- Ol’ga Aleksandrovna Ladyzhenskaia, Vsevolod Alekseevich Solonnikov, and Nina N Ural’tseva. Linear and quasi-linear equations of parabolic type, volume 23. American Mathematical Soc., 1988.
- Kazuaki Nakayama, Takeshi Iizuka, and Miki Wadati, Curve lengthening equation and its solutions, J. Phys. Soc. Japan 63 (1994), no. 4, 1311–1321. MR 1280385, DOI 10.1143/JPSJ.63.1311
Additional Information
- Sigurd Angenent
- Affiliation: Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, Wisconsin 53706
- MR Author ID: 26245
- ORCID: 0000-0003-3515-4539
- Qian You
- Affiliation: Jersey City, New Jersey 07310
- MR Author ID: 940777
- Received by editor(s): September 19, 2018
- Received by editor(s) in revised form: December 13, 2019
- Published electronically: November 3, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 863-880
- MSC (2010): Primary 53C44
- DOI: https://doi.org/10.1090/tran/8186
- MathSciNet review: 4196380