The maximum volume of hyperbolic polyhedra
HTML articles powered by AMS MathViewer
- by Giulio Belletti PDF
- Trans. Amer. Math. Soc. 374 (2021), 1125-1153 Request permission
Abstract:
We study the supremum of the volume of hyperbolic polyhedra with some fixed combinatorics and with vertices of any kind (real, ideal, or hyperideal). We find that the supremum is always equal to the volume of the rectification of the $1$-skeleton.
The theorem is proved by applying a sort of volume-increasing flow to any hyperbolic polyhedron. Singularities may arise in the flow because some strata of the polyhedron may degenerate to lower-dimensional objects; when this occurs, we need to study carefully the combinatorics of the resulting polyhedron and continue with the flow, until eventually we get a rectified polyhedron.
References
- E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 81 (123) (1970), 445–478 (Russian). MR 0259734
- Xiliang Bao and Francis Bonahon, Hyperideal polyhedra in hyperbolic 3-space, Bull. Soc. Math. France 130 (2002), no. 3, 457–491 (English, with English and French summaries). MR 1943885, DOI 10.24033/bsmf.2426
- G. Belletti, A maximum volume conjecture for hyperbolic polyhedra, arXiv:2002.01904, 2020.
- Raquel Díaz, Non-convexity of the space of dihedral angles of hyperbolic polyhedra, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 9, 993–998 (English, with English and French summaries). MR 1485617, DOI 10.1016/S0764-4442(97)89092-1
- Herbert Fleischner, The uniquely embeddable planar graphs, Discrete Math. 4 (1973), 347–358. MR 314671, DOI 10.1016/0012-365X(73)90169-6
- John Milnor, John Milnor: collected papers. Vol. 2, Publish or Perish, Inc., Houston, TX, 1995. The fundamental group. MR 2307956
- Yosuke Miyamoto, On the volume and surface area of hyperbolic polyhedra, Geom. Dedicata 40 (1991), no. 2, 223–236. MR 1134974, DOI 10.1007/BF00145916
- Grégoire Montcouquiol, Deformations of hyperbolic convex polyhedra and cone-3-manifolds, Geom. Dedicata 166 (2013), 163–183. MR 3101165, DOI 10.1007/s10711-012-9790-5
- Igor Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. (2) 139 (1994), no. 3, 553–580. MR 1283870, DOI 10.2307/2118572
- Igor Rivin, A characterization of ideal polyhedra in hyperbolic $3$-space, Ann. of Math. (2) 143 (1996), no. 1, 51–70. MR 1370757, DOI 10.2307/2118652
- Craig D. Hodgson and Igor Rivin, A characterization of compact convex polyhedra in hyperbolic $3$-space, Invent. Math. 111 (1993), no. 1, 77–111. MR 1193599, DOI 10.1007/BF01231281
- E. Steinitz, Polyeder und raumeinteilungen, Encyk. der Math. Wiss., 12:38–43, 1922.
- W. Thurston, The geometry and topology of three-manifolds, Princeton University Princeton, NJ, 1979.
- Akira Ushijima, A volume formula for generalised hyperbolic tetrahedra, Non-Euclidean geometries, Math. Appl. (N. Y.), vol. 581, Springer, New York, 2006, pp. 249–265. MR 2191251, DOI 10.1007/0-387-29555-0_{1}3
- A. Vesnin and A. Egorov, Ideal right-angled polyhedra in Lobachevsky space, arXiv:1909.11523.
- Hartmut Weiss, The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than $2\pi$, Geom. Topol. 17 (2013), no. 1, 329–367. MR 3035330, DOI 10.2140/gt.2013.17.329
Additional Information
- Giulio Belletti
- Affiliation: Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
- ORCID: 0000-0002-7055-3335
- Email: giulio.belletti@sns.it
- Received by editor(s): February 18, 2020
- Received by editor(s) in revised form: May 21, 2020
- Published electronically: November 3, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 1125-1153
- MSC (2010): Primary 52B10
- DOI: https://doi.org/10.1090/tran/8215
- MathSciNet review: 4196389