Assouad dimension of planar self-affine sets
Authors:
Balázs Bárány, Antti Käenmäki and Eino Rossi
Journal:
Trans. Amer. Math. Soc. 374 (2021), 1297-1326
MSC (2010):
Primary 28A80; Secondary 37C45, 37L30
DOI:
https://doi.org/10.1090/tran/8224
Published electronically:
November 12, 2020
MathSciNet review:
4196394
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We calculate the Assouad dimension of a planar self-affine set $X$ satisfying the strong separation condition and the projection condition and show that $X$ is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set $X$ adheres to very strong tangential regularity by showing that any two points of $X$, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets.
- Christoph Bandt and Antti Käenmäki, Local structure of self-affine sets, Ergodic Theory Dynam. Systems 33 (2013), no. 5, 1326–1337. MR 3103085, DOI https://doi.org/10.1017/S0143385712000326
- Krzysztof Barański, Hausdorff dimension of the limit sets of some planar geometric constructions, Adv. Math. 210 (2007), no. 1, 215–245. MR 2298824, DOI https://doi.org/10.1016/j.aim.2006.06.005
- Krzysztof Barański, Hausdorff dimension of self-affine limit sets with an invariant direction, Discrete Contin. Dyn. Syst. 21 (2008), no. 4, 1015–1023. MR 2399447, DOI https://doi.org/10.3934/dcds.2008.21.1015
- Balázs Bárány, On the Ledrappier-Young formula for self-affine measures, Math. Proc. Cambridge Philos. Soc. 159 (2015), no. 3, 405–432. MR 3413884, DOI https://doi.org/10.1017/S0305004115000419
- Balázs Bárány, Michael Hochman, and Ariel Rapaport, Hausdorff dimension of planar self-affine sets and measures, Invent. Math. 216 (2019), no. 3, 601–659. MR 3955707, DOI https://doi.org/10.1007/s00222-018-00849-y
- B. Bárány, T. Jordan, A. Käenmäki, and M. Rams, Birkhoff and Lyapunov spectra on planar self-affine sets, Int. Math. Res. Not. IMRN, arXiv:1805.08004, 2020.
- Balázs Bárány and Antti Käenmäki, Ledrappier-Young formula and exact dimensionality of self-affine measures, Adv. Math. 318 (2017), 88–129. MR 3689737, DOI https://doi.org/10.1016/j.aim.2017.07.015
- Balázs Bárány, Antti Käenmäki, and Henna Koivusalo, Dimension of self-affine sets for fixed translation vectors, J. Lond. Math. Soc. (2) 98 (2018), no. 1, 223–252. MR 3847239, DOI https://doi.org/10.1112/jlms.12132
- B. Bárány, A. Käenmäki, and I. D. Morris, Domination, almost additivity, and thermodynamical formalism for planar matrix cocycles, Israel J. Math., arXiv:1802.01916, 2020.
- David Bate and Tuomas Orponen, On the conformal dimension of product measures, Proc. Lond. Math. Soc. (3) 117 (2018), no. 2, 277–302. MR 3851324, DOI https://doi.org/10.1112/plms.12130
- T. Bedford. Crinkly curves, Markov partitions and box dimensions in self-similar sets. 1984. Thesis (Ph.D.)–The University of Warwick.
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI https://doi.org/10.1007/BF02392360
- Jairo Bochi and Nicolas Gourmelon, Some characterizations of domination, Math. Z. 263 (2009), no. 1, 221–231. MR 2529495, DOI https://doi.org/10.1007/s00209-009-0494-y
- Mario Bonk and Sergei Merenkov, Quasisymmetric rigidity of square Sierpiński carpets, Ann. of Math. (2) 177 (2013), no. 2, 591–643. MR 3010807, DOI https://doi.org/10.4007/annals.2013.177.2.5
- Philippe Bougerol and Jean Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 886674
- D.-J. Feng. Dimension of invariant measures for affine iterated function systems. arXiv:1901.01691, 2019.
- De-Jun Feng and Antti Käenmäki, Equilibrium states of the pressure function for products of matrices, Discrete Contin. Dyn. Syst. 30 (2011), no. 3, 699–708. MR 2784616, DOI https://doi.org/10.3934/dcds.2011.30.699
- Jonathan M. Fraser, Assouad type dimensions and homogeneity of fractals, Trans. Amer. Math. Soc. 366 (2014), no. 12, 6687–6733. MR 3267023, DOI https://doi.org/10.1090/S0002-9947-2014-06202-8
- J. M. Fraser, A. M. Henderson, E. J. Olson, and J. C. Robinson, On the Assouad dimension of self-similar sets with overlaps, Adv. Math. 273 (2015), 188–214. MR 3311761, DOI https://doi.org/10.1016/j.aim.2014.12.026
- Jonathan M. Fraser and Douglas C. Howroyd, Assouad type dimensions for self-affine sponges, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 1, 149–174. MR 3558522, DOI https://doi.org/10.5186/aasfm.2017.4213
- Jonathan M. Fraser and Thomas Jordan, The Assouad dimension of self-affine carpets with no grid structure, Proc. Amer. Math. Soc. 145 (2017), no. 11, 4905–4918. MR 3692005, DOI https://doi.org/10.1090/proc/13629
- Hrant Hakobyan, Conformal dimension: Cantor sets and Fuglede modulus, Int. Math. Res. Not. IMRN 1 (2010), 87–111. MR 2576285, DOI https://doi.org/10.1093/imrn/rnp115
- Antti Käenmäki, On natural invariant measures on generalised iterated function systems, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 419–458. MR 2097242
- Antti Käenmäki, Henna Koivusalo, and Eino Rossi, Self-affine sets with fibred tangents, Ergodic Theory Dynam. Systems 37 (2017), no. 6, 1915–1934. MR 3681990, DOI https://doi.org/10.1017/etds.2015.130
- Antti Käenmäki, Tuomo Ojala, and Eino Rossi, Rigidity of quasisymmetric mappings on self-affine carpets, Int. Math. Res. Not. IMRN 12 (2018), 3769–3799. MR 3815187, DOI https://doi.org/10.1093/imrn/rnw336
- Antti Käenmäki and Henry W. J. Reeve, Multifractal analysis of Birkhoff averages for typical infinitely generated self-affine sets, J. Fractal Geom. 1 (2014), no. 1, 83–152. MR 3166207, DOI https://doi.org/10.4171/JFG/3
- István Kolossváry and Károly Simon, Triangular Gatzouras-Lalley-type planar carpets with overlaps, Nonlinearity 32 (2019), no. 9, 3294–3341. MR 3987800, DOI https://doi.org/10.1088/1361-6544/ab1757
- Steven P. Lalley and Dimitrios Gatzouras, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J. 41 (1992), no. 2, 533–568. MR 1183358, DOI https://doi.org/10.1512/iumj.1992.41.41031
- Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), no. 1, 23–76. MR 1608518
- John M. Mackay, Assouad dimension of self-affine carpets, Conform. Geom. Dyn. 15 (2011), 177–187. MR 2846307, DOI https://doi.org/10.1090/S1088-4173-2011-00232-3
- John M. Mackay and Jeremy T. Tyson, Conformal dimension, University Lecture Series, vol. 54, American Mathematical Society, Providence, RI, 2010. Theory and application. MR 2662522
- Curt McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1–9. MR 771063, DOI https://doi.org/10.1017/S0027763000021085
- Ian D. Morris and Pablo Shmerkin, On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems, Trans. Amer. Math. Soc. 371 (2019), no. 3, 1547–1582. MR 3894027, DOI https://doi.org/10.1090/tran/7334
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI https://doi.org/10.5186/aasfm.1989.1424
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI https://doi.org/10.5186/aasfm.1980.0531
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 28A80, 37C45, 37L30
Retrieve articles in all journals with MSC (2010): 28A80, 37C45, 37L30
Additional Information
Balázs Bárány
Affiliation:
Department of Stochastics, MTA-BME Stochastics Research Group, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary
MR Author ID:
890989
Email:
balubsheep@gmail.com
Antti Käenmäki
Affiliation:
Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
Email:
antti.kaenmaki@uef.fi
Eino Rossi
Affiliation:
Department of Mathematics and Statistics, P.O. Box 68 (Pietari Kalmin katu 5), FI-00014 University of Helsinki, Finland
MR Author ID:
1050675
Email:
eino.rossi@gmail.com
Keywords:
Self-affine set,
tangent set,
Assouad dimension,
conformal dimension
Received by editor(s):
June 26, 2019
Received by editor(s) in revised form:
March 5, 2020, and June 19, 2020
Published electronically:
November 12, 2020
Additional Notes:
The first author acknowledges support from the grants OTKA K123782, NKFI PD123970, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The second author thanks the Academy of Finland (project no. 286877) for financial support. The third author was funded by the University of Helsinki via the project “Quantitative rectifiability of sets and measures in Euclidean spaces and Heisenberg groups” (project no. 7516125).
Article copyright:
© Copyright 2020
American Mathematical Society