## Assouad dimension of planar self-affine sets

HTML articles powered by AMS MathViewer

- by Balázs Bárány, Antti Käenmäki and Eino Rossi PDF
- Trans. Amer. Math. Soc.
**374**(2021), 1297-1326 Request permission

## Abstract:

We calculate the Assouad dimension of a planar self-affine set $X$ satisfying the strong separation condition and the projection condition and show that $X$ is minimal for the conformal Assouad dimension. Furthermore, we see that such a self-affine set $X$ adheres to very strong tangential regularity by showing that any two points of $X$, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets.## References

- Christoph Bandt and Antti Käenmäki,
*Local structure of self-affine sets*, Ergodic Theory Dynam. Systems**33**(2013), no. 5, 1326–1337. MR**3103085**, DOI 10.1017/S0143385712000326 - Krzysztof Barański,
*Hausdorff dimension of the limit sets of some planar geometric constructions*, Adv. Math.**210**(2007), no. 1, 215–245. MR**2298824**, DOI 10.1016/j.aim.2006.06.005 - Krzysztof Barański,
*Hausdorff dimension of self-affine limit sets with an invariant direction*, Discrete Contin. Dyn. Syst.**21**(2008), no. 4, 1015–1023. MR**2399447**, DOI 10.3934/dcds.2008.21.1015 - Balázs Bárány,
*On the Ledrappier-Young formula for self-affine measures*, Math. Proc. Cambridge Philos. Soc.**159**(2015), no. 3, 405–432. MR**3413884**, DOI 10.1017/S0305004115000419 - Balázs Bárány, Michael Hochman, and Ariel Rapaport,
*Hausdorff dimension of planar self-affine sets and measures*, Invent. Math.**216**(2019), no. 3, 601–659. MR**3955707**, DOI 10.1007/s00222-018-00849-y - B. Bárány, T. Jordan, A. Käenmäki, and M. Rams,
*Birkhoff and Lyapunov spectra on planar self-affine sets*, Int. Math. Res. Not. IMRN, arXiv:1805.08004, 2020. - Balázs Bárány and Antti Käenmäki,
*Ledrappier-Young formula and exact dimensionality of self-affine measures*, Adv. Math.**318**(2017), 88–129. MR**3689737**, DOI 10.1016/j.aim.2017.07.015 - Balázs Bárány, Antti Käenmäki, and Henna Koivusalo,
*Dimension of self-affine sets for fixed translation vectors*, J. Lond. Math. Soc. (2)**98**(2018), no. 1, 223–252. MR**3847239**, DOI 10.1112/jlms.12132 - B. Bárány, A. Käenmäki, and I. D. Morris,
*Domination, almost additivity, and thermodynamical formalism for planar matrix cocycles*, Israel J. Math., arXiv:1802.01916, 2020. - David Bate and Tuomas Orponen,
*On the conformal dimension of product measures*, Proc. Lond. Math. Soc. (3)**117**(2018), no. 2, 277–302. MR**3851324**, DOI 10.1112/plms.12130 - T. Bedford.
*Crinkly curves, Markov partitions and box dimensions in self-similar sets*. 1984. Thesis (Ph.D.)–The University of Warwick. - A. Beurling and L. Ahlfors,
*The boundary correspondence under quasiconformal mappings*, Acta Math.**96**(1956), 125–142. MR**86869**, DOI 10.1007/BF02392360 - Jairo Bochi and Nicolas Gourmelon,
*Some characterizations of domination*, Math. Z.**263**(2009), no. 1, 221–231. MR**2529495**, DOI 10.1007/s00209-009-0494-y - Mario Bonk and Sergei Merenkov,
*Quasisymmetric rigidity of square Sierpiński carpets*, Ann. of Math. (2)**177**(2013), no. 2, 591–643. MR**3010807**, DOI 10.4007/annals.2013.177.2.5 - Philippe Bougerol and Jean Lacroix,
*Products of random matrices with applications to Schrödinger operators*, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR**886674**, DOI 10.1007/978-1-4684-9172-2 - D.-J. Feng.
*Dimension of invariant measures for affine iterated function systems*. arXiv:1901.01691, 2019. - De-Jun Feng and Antti Käenmäki,
*Equilibrium states of the pressure function for products of matrices*, Discrete Contin. Dyn. Syst.**30**(2011), no. 3, 699–708. MR**2784616**, DOI 10.3934/dcds.2011.30.699 - Jonathan M. Fraser,
*Assouad type dimensions and homogeneity of fractals*, Trans. Amer. Math. Soc.**366**(2014), no. 12, 6687–6733. MR**3267023**, DOI 10.1090/S0002-9947-2014-06202-8 - J. M. Fraser, A. M. Henderson, E. J. Olson, and J. C. Robinson,
*On the Assouad dimension of self-similar sets with overlaps*, Adv. Math.**273**(2015), 188–214. MR**3311761**, DOI 10.1016/j.aim.2014.12.026 - Jonathan M. Fraser and Douglas C. Howroyd,
*Assouad type dimensions for self-affine sponges*, Ann. Acad. Sci. Fenn. Math.**42**(2017), no. 1, 149–174. MR**3558522**, DOI 10.5186/aasfm.2017.4213 - Jonathan M. Fraser and Thomas Jordan,
*The Assouad dimension of self-affine carpets with no grid structure*, Proc. Amer. Math. Soc.**145**(2017), no. 11, 4905–4918. MR**3692005**, DOI 10.1090/proc/13629 - Hrant Hakobyan,
*Conformal dimension: Cantor sets and Fuglede modulus*, Int. Math. Res. Not. IMRN**1**(2010), 87–111. MR**2576285**, DOI 10.1093/imrn/rnp115 - Antti Käenmäki,
*On natural invariant measures on generalised iterated function systems*, Ann. Acad. Sci. Fenn. Math.**29**(2004), no. 2, 419–458. MR**2097242** - Antti Käenmäki, Henna Koivusalo, and Eino Rossi,
*Self-affine sets with fibred tangents*, Ergodic Theory Dynam. Systems**37**(2017), no. 6, 1915–1934. MR**3681990**, DOI 10.1017/etds.2015.130 - Antti Käenmäki, Tuomo Ojala, and Eino Rossi,
*Rigidity of quasisymmetric mappings on self-affine carpets*, Int. Math. Res. Not. IMRN**12**(2018), 3769–3799. MR**3815187**, DOI 10.1093/imrn/rnw336 - Antti Käenmäki and Henry W. J. Reeve,
*Multifractal analysis of Birkhoff averages for typical infinitely generated self-affine sets*, J. Fractal Geom.**1**(2014), no. 1, 83–152. MR**3166207**, DOI 10.4171/JFG/3 - István Kolossváry and Károly Simon,
*Triangular Gatzouras-Lalley-type planar carpets with overlaps*, Nonlinearity**32**(2019), no. 9, 3294–3341. MR**3987800**, DOI 10.1088/1361-6544/ab1757 - Steven P. Lalley and Dimitrios Gatzouras,
*Hausdorff and box dimensions of certain self-affine fractals*, Indiana Univ. Math. J.**41**(1992), no. 2, 533–568. MR**1183358**, DOI 10.1512/iumj.1992.41.41031 - Jouni Luukkainen,
*Assouad dimension: antifractal metrization, porous sets, and homogeneous measures*, J. Korean Math. Soc.**35**(1998), no. 1, 23–76. MR**1608518** - John M. Mackay,
*Assouad dimension of self-affine carpets*, Conform. Geom. Dyn.**15**(2011), 177–187. MR**2846307**, DOI 10.1090/S1088-4173-2011-00232-3 - John M. Mackay and Jeremy T. Tyson,
*Conformal dimension*, University Lecture Series, vol. 54, American Mathematical Society, Providence, RI, 2010. Theory and application. MR**2662522**, DOI 10.1090/ulect/054 - Curt McMullen,
*The Hausdorff dimension of general Sierpiński carpets*, Nagoya Math. J.**96**(1984), 1–9. MR**771063**, DOI 10.1017/S0027763000021085 - Ian D. Morris and Pablo Shmerkin,
*On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems*, Trans. Amer. Math. Soc.**371**(2019), no. 3, 1547–1582. MR**3894027**, DOI 10.1090/tran/7334 - Pierre Pansu,
*Dimension conforme et sphère à l’infini des variétés à courbure négative*, Ann. Acad. Sci. Fenn. Ser. A I Math.**14**(1989), no. 2, 177–212 (French, with English summary). MR**1024425**, DOI 10.5186/aasfm.1989.1424 - P. Tukia and J. Väisälä,
*Quasisymmetric embeddings of metric spaces*, Ann. Acad. Sci. Fenn. Ser. A I Math.**5**(1980), no. 1, 97–114. MR**595180**, DOI 10.5186/aasfm.1980.0531

## Additional Information

**Balázs Bárány**- Affiliation: Department of Stochastics, MTA-BME Stochastics Research Group, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary
- MR Author ID: 890989
- Email: balubsheep@gmail.com
**Antti Käenmäki**- Affiliation: Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Email: antti.kaenmaki@uef.fi
**Eino Rossi**- Affiliation: Department of Mathematics and Statistics, P.O. Box 68 (Pietari Kalmin katu 5), FI-00014 University of Helsinki, Finland
- MR Author ID: 1050675
- Email: eino.rossi@gmail.com
- Received by editor(s): June 26, 2019
- Received by editor(s) in revised form: March 5, 2020, and June 19, 2020
- Published electronically: November 12, 2020
- Additional Notes: The first author acknowledges support from the grants OTKA K123782, NKFI PD123970, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The second author thanks the Academy of Finland (project no. 286877) for financial support. The third author was funded by the University of Helsinki via the project “Quantitative rectifiability of sets and measures in Euclidean spaces and Heisenberg groups” (project no. 7516125).
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**374**(2021), 1297-1326 - MSC (2010): Primary 28A80; Secondary 37C45, 37L30
- DOI: https://doi.org/10.1090/tran/8224
- MathSciNet review: 4196394