Grothendieck’s inequalities for JB$^*$-triples: Proof of the Barton–Friedman conjecture
HTML articles powered by AMS MathViewer
- by Jan Hamhalter, Ondřej F.K. Kalenda, Antonio M. Peralta and Hermann Pfitzner PDF
- Trans. Amer. Math. Soc. 374 (2021), 1327-1350 Request permission
Abstract:
We prove that, given a constant $K> 2$ and a bounded linear operator $T$ from a JB$^*$-triple $E$ into a complex Hilbert space $H$, there exists a norm-one functional $\psi \in E^*$ satisfying \begin{equation*} \|T(x)\| \leq K \|T\| \|x\|_{\psi } \end{equation*} for all $x\in E$. Applying this result we show that, given $G > 8 (1+2\sqrt {3})$ and a bounded bilinear form $V$ on the Cartesian product of two JB$^*$-triples $E$ and $B$, there exist norm-one functionals $\varphi \in E^{*}$ and $\psi \in B^{*}$ satisfying \begin{equation*} |V(x,y)| \leq G \ \|V\| \|x\|_{\varphi } \|y\|_{\psi } \end{equation*} for all $(x,y)\in E \times B$. These results prove a conjecture pursued during almost twenty years.References
- Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional analysis, 3rd ed., Springer, Berlin, 2006. A hitchhiker’s guide. MR 2378491
- T. Barton and Y. Friedman, Grothendieck’s inequality for $JB^*$-triples and applications, J. London Math. Soc. (2) 36 (1987), no. 3, 513–523. MR 918642, DOI 10.1112/jlms/s2-36.3.513
- T. Barton and Richard M. Timoney, Weak$^\ast$-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177–191. MR 884654, DOI 10.7146/math.scand.a-12160
- Robert Braun, Wilhelm Kaup, and Harald Upmeier, A holomorphic characterization of Jordan $C^*$-algebras, Math. Z. 161 (1978), no. 3, 277–290. MR 493373, DOI 10.1007/BF01214510
- Leslie J. Bunce, Francisco J. Fernández-Polo, Juan Martínez Moreno, and Antonio M. Peralta, A Saitô-Tomita-Lusin theorem for JB*-triples and applications, Q. J. Math. 57 (2006), no. 1, 37–48. MR 2204259, DOI 10.1093/qmath/hah059
- Miguel Cabrera García and Ángel Rodríguez Palacios, Non-associative normed algebras. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 154, Cambridge University Press, Cambridge, 2014. The Vidav-Palmer and Gelfand-Naimark theorems. MR 3242640, DOI 10.1017/CBO9781107337763
- Miguel Cabrera García and Ángel Rodríguez Palacios, Non-associative normed algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 167, Cambridge University Press, Cambridge, 2018. Representation theory and the Zel’manov approach. MR 3791798, DOI 10.1017/9781107337817
- Cho-Ho Chu, Jordan structures in geometry and analysis, Cambridge Tracts in Mathematics, vol. 190, Cambridge University Press, Cambridge, 2012. MR 2885059
- Cho-Ho Chu, Bruno Iochum, and Guy Loupias, Grothendieck’s theorem and factorization of operators in Jordan triples, Math. Ann. 284 (1989), no. 1, 41–53. MR 995380, DOI 10.1007/BF01443503
- Seán Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scand. 59 (1986), no. 1, 131–142. MR 873493, DOI 10.7146/math.scand.a-12158
- C. Martin Edwards, Francisco J. Fernández-Polo, Christopher S. Hoskin, and Antonio M. Peralta, On the facial structure of the unit ball in a $\rm JB^*$-triple, J. Reine Angew. Math. 641 (2010), 123–144. MR 2643927, DOI 10.1515/CRELLE.2010.030
- Marián J. Fabian, Gâteaux differentiability of convex functions and topology, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. Weak Asplund spaces; A Wiley-Interscience Publication. MR 1461271
- Yaakov Friedman and Bernard Russo, Structure of the predual of a $JBW^\ast$-triple, J. Reine Angew. Math. 356 (1985), 67–89. MR 779376, DOI 10.1515/crll.1985.356.67
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
- Uffe Haagerup, The Grothendieck inequality for bilinear forms on $C^\ast$-algebras, Adv. in Math. 56 (1985), no. 2, 93–116. MR 788936, DOI 10.1016/0001-8708(85)90026-X
- Jan Hamhalter, Ondřej F. K. Kalenda, Antonio M. Peralta, and Hermann Pfitzner, Measures of weak non-compactness in preduals of von Neumann algebras and $\rm JBW^\ast$-triples, J. Funct. Anal. 278 (2020), no. 1, 108300, 69. MR 4027746, DOI 10.1016/j.jfa.2019.108300
- Harald Hanche-Olsen and Erling Størmer, Jordan operator algebras, Monographs and Studies in Mathematics, vol. 21, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 755003
- Lawrence A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973) Lecture Notes in Math., Vol. 364, Springer, Berlin, 1974, pp. 13–40. MR 0407330
- Günther Horn, Classification of JBW$^*$-triples of type $\textrm {I}$, Math. Z. 196 (1987), no. 2, 271–291. MR 910832, DOI 10.1007/BF01163661
- G. Horn and E. Neher, Classification of continuous $JBW^*$-triples, Trans. Amer. Math. Soc. 306 (1988), no. 2, 553–578. MR 933306, DOI 10.1090/S0002-9947-1988-0933306-7
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Graduate Studies in Mathematics, vol. 16, American Mathematical Society, Providence, RI, 1997. Advanced theory; Corrected reprint of the 1986 original. MR 1468230, DOI 10.1090/gsm/016/01
- O. F. K. Kalenda, A. M. Peralta, and H. Pfitzner On optimality of constants in the Little Grothendieck theorem, arXiv:2002.12273.
- Wilhelm Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), no. 4, 503–529. MR 710768, DOI 10.1007/BF01173928
- Wilhelm Kaup and Harald Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157 (1977), no. 2, 179–200. MR 492414, DOI 10.1007/BF01215150
- Antonio M. Peralta, Little Grothendieck’s theorem for real $\textrm {JB}^*$-triples, Math. Z. 237 (2001), no. 3, 531–545. MR 1845336, DOI 10.1007/PL00004878
- Antonio M. Peralta, New advances on the Grothendieck’s inequality problem for bilinear forms on JB*-triples, Math. Inequal. Appl. 8 (2005), no. 1, 7–21. MR 2137902, DOI 10.7153/mia-08-02
- Antonio M. Peralta and Angel Rodríguez Palacios, Grothendieck’s inequalities for real and complex $\textrm {JBW}^\ast$-triples, Proc. London Math. Soc. (3) 83 (2001), no. 3, 605–625. MR 1851084, DOI 10.1112/plms/83.3.605
- Antonio M. Peralta and Angel Rodríguez Palacios, Grothendieck’s inequalities revisited, Recent progress in functional analysis (Valencia, 2000) North-Holland Math. Stud., vol. 189, North-Holland, Amsterdam, 2001, pp. 409–423. MR 1861775, DOI 10.1016/S0304-0208(01)80064-5
- Gilles Pisier, Grothendieck’s theorem for noncommutative $C^{\ast }$-algebras, with an appendix on Grothendieck’s constants, J. Functional Analysis 29 (1978), no. 3, 397–415. MR 512252, DOI 10.1016/0022-1236(78)90038-1
- Gilles Pisier, Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 237–323. MR 2888168, DOI 10.1090/S0273-0979-2011-01348-9
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- J. D. Maitland Wright, Jordan $C^*$-algebras, Michigan Math. J. 24 (1977), no. 3, 291–302. MR 487478
Additional Information
- Jan Hamhalter
- Affiliation: Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
- MR Author ID: 80430
- Email: hamhalte@fel.cvut.cz
- Ondřej F.K. Kalenda
- Affiliation: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 86, 186 75 Praha 8, Czech Republic
- ORCID: 0000-0003-4312-2166
- Email: kalenda@karlin.mff.cuni.cz
- Antonio M. Peralta
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
- MR Author ID: 666723
- ORCID: 0000-0003-2528-8357
- Email: aperalta@ugr.es
- Hermann Pfitzner
- Affiliation: Université d’Orléans, BP 6759, F-45067 Orléans Cedex 2, France
- MR Author ID: 333993
- Email: hermann.pfitzner@univ-orleans.fr
- Received by editor(s): May 8, 2020
- Received by editor(s) in revised form: June 19, 2020
- Published electronically: November 12, 2020
- Additional Notes: The first two authors were supported in part by the Research Grant GAČR 17-00941S. The first author was partly supported further by the project OP VVV Center for Advanced Applied Science CZ.02.1.01/0.0/0.0/16_019/000077. The third author was partially supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and European Regional Development Fund project no. PGC2018-093332-B-I00, Programa Operativo FEDER 2014-2020 and Consejería de Economía y Conocimiento de la Junta de Andalucía grant number A-FQM-242-UGR18 and by Junta de Andalucía grant FQM375.
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 1327-1350
- MSC (2010): Primary 46L70, 17C65
- DOI: https://doi.org/10.1090/tran/8227
- MathSciNet review: 4196395