Grothendieck's inequalities for JB-triples: Proof of the Barton-Friedman conjecture
Authors:
Jan Hamhalter, Ondřej F.K. Kalenda, Antonio M. Peralta and Hermann Pfitzner
Journal:
Trans. Amer. Math. Soc. 374 (2021), 1327-1350
MSC (2010):
Primary 46L70, 17C65
DOI:
https://doi.org/10.1090/tran/8227
Published electronically:
November 12, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that, given a constant and a bounded linear operator
from a JB
-triple
into a complex Hilbert space
, there exists a norm-one functional
satisfying
![]() |
for all








![]() |
for all

- [1] Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional analysis, 3rd ed., Springer, Berlin, 2006. A hitchhiker’s guide. MR 2378491
- [2] T. Barton and Y. Friedman, Grothendieck’s inequality for 𝐽𝐵*-triples and applications, J. London Math. Soc. (2) 36 (1987), no. 3, 513–523. MR 918642, https://doi.org/10.1112/jlms/s2-36.3.513
- [3] T. Barton and Richard M. Timoney, Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177–191. MR 884654, https://doi.org/10.7146/math.scand.a-12160
- [4] Robert Braun, Wilhelm Kaup, and Harald Upmeier, A holomorphic characterization of Jordan 𝐶*-algebras, Math. Z. 161 (1978), no. 3, 277–290. MR 493373, https://doi.org/10.1007/BF01214510
- [5] Leslie J. Bunce, Francisco J. Fernández-Polo, Juan Martínez Moreno, and Antonio M. Peralta, A Saitô-Tomita-Lusin theorem for JB*-triples and applications, Q. J. Math. 57 (2006), no. 1, 37–48. MR 2204259, https://doi.org/10.1093/qmath/hah059
- [6] Miguel Cabrera García and Ángel Rodríguez Palacios, Non-associative normed algebras. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 154, Cambridge University Press, Cambridge, 2014. The Vidav-Palmer and Gelfand-Naimark theorems. MR 3242640
- [7] Miguel Cabrera García and Ángel Rodríguez Palacios, Non-associative normed algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 167, Cambridge University Press, Cambridge, 2018. Representation theory and the Zel’manov approach. MR 3791798
- [8] Cho-Ho Chu, Jordan structures in geometry and analysis, Cambridge Tracts in Mathematics, vol. 190, Cambridge University Press, Cambridge, 2012. MR 2885059
- [9] Cho-Ho Chu, Bruno Iochum, and Guy Loupias, Grothendieck’s theorem and factorization of operators in Jordan triples, Math. Ann. 284 (1989), no. 1, 41–53. MR 995380, https://doi.org/10.1007/BF01443503
- [10] Seán Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scand. 59 (1986), no. 1, 131–142. MR 873493, https://doi.org/10.7146/math.scand.a-12158
- [11] C. Martin Edwards, Francisco J. Fernández-Polo, Christopher S. Hoskin, and Antonio M. Peralta, On the facial structure of the unit ball in a 𝐽𝐵*-triple, J. Reine Angew. Math. 641 (2010), 123–144. MR 2643927, https://doi.org/10.1515/CRELLE.2010.030
- [12] Marián J. Fabian, Gâteaux differentiability of convex functions and topology, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. Weak Asplund spaces; A Wiley-Interscience Publication. MR 1461271
- [13] Yaakov Friedman and Bernard Russo, Structure of the predual of a 𝐽𝐵𝑊*-triple, J. Reine Angew. Math. 356 (1985), 67–89. MR 779376, https://doi.org/10.1515/crll.1985.356.67
- [14] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
- [15] Uffe Haagerup, The Grothendieck inequality for bilinear forms on 𝐶*-algebras, Adv. in Math. 56 (1985), no. 2, 93–116. MR 788936, https://doi.org/10.1016/0001-8708(85)90026-X
- [16] Jan Hamhalter, Ondřej F. K. Kalenda, Antonio M. Peralta, and Hermann Pfitzner, Measures of weak non-compactness in preduals of von Neumann algebras and 𝐽𝐵𝑊*-triples, J. Funct. Anal. 278 (2020), no. 1, 108300, 69. MR 4027746, https://doi.org/10.1016/j.jfa.2019.108300
- [17] Harald Hanche-Olsen and Erling Størmer, Jordan operator algebras, Monographs and Studies in Mathematics, vol. 21, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 755003
- [18] Lawrence A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973) Springer, Berlin, 1974, pp. 13–40. Lecture Notes in Math., Vol. 364. MR 0407330
- [19] Günther Horn, Classification of JBW*-triples of type 𝐼, Math. Z. 196 (1987), no. 2, 271–291. MR 910832, https://doi.org/10.1007/BF01163661
- [20] G. Horn and E. Neher, Classification of continuous 𝐽𝐵𝑊*-triples, Trans. Amer. Math. Soc. 306 (1988), no. 2, 553–578. MR 933306, https://doi.org/10.1090/S0002-9947-1988-0933306-7
- [21] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Graduate Studies in Mathematics, vol. 16, American Mathematical Society, Providence, RI, 1997. Advanced theory; Corrected reprint of the 1986 original. MR 1468230
- [22]
O. F. K. KALENDA, A. M. PERALTA, AND H. PFITZNER
On optimality of constants in the Little Grothendieck theorem, 2002.12273. - [23] Wilhelm Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), no. 4, 503–529. MR 710768, https://doi.org/10.1007/BF01173928
- [24] Wilhelm Kaup and Harald Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157 (1977), no. 2, 179–200. MR 492414, https://doi.org/10.1007/BF01215150
- [25] Antonio M. Peralta, Little Grothendieck’s theorem for real 𝐽𝐵*-triples, Math. Z. 237 (2001), no. 3, 531–545. MR 1845336, https://doi.org/10.1007/PL00004878
- [26] Antonio M. Peralta, New advances on the Grothendieck’s inequality problem for bilinear forms on JB*-triples, Math. Inequal. Appl. 8 (2005), no. 1, 7–21. MR 2137902, https://doi.org/10.7153/mia-08-02
- [27] Antonio M. Peralta and Angel Rodríguez Palacios, Grothendieck’s inequalities for real and complex 𝐽𝐵𝑊*-triples, Proc. London Math. Soc. (3) 83 (2001), no. 3, 605–625. MR 1851084, https://doi.org/10.1112/plms/83.3.605
- [28] Antonio M. Peralta and Angel Rodríguez Palacios, Grothendieck’s inequalities revisited, Recent progress in functional analysis (Valencia, 2000) North-Holland Math. Stud., vol. 189, North-Holland, Amsterdam, 2001, pp. 409–423. MR 1861775, https://doi.org/10.1016/S0304-0208(01)80064-5
- [29] Gilles Pisier, Grothendieck’s theorem for noncommutative 𝐶*-algebras, with an appendix on Grothendieck’s constants, J. Functional Analysis 29 (1978), no. 3, 397–415. MR 512252, https://doi.org/10.1016/0022-1236(78)90038-1
- [30] Gilles Pisier, Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 237–323. MR 2888168, https://doi.org/10.1090/S0273-0979-2011-01348-9
- [31] Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- [32] J. D. Maitland Wright, Jordan 𝐶*-algebras, Michigan Math. J. 24 (1977), no. 3, 291–302. MR 487478
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L70, 17C65
Retrieve articles in all journals with MSC (2010): 46L70, 17C65
Additional Information
Jan Hamhalter
Affiliation:
Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
Email:
hamhalte@fel.cvut.cz
Ondřej F.K. Kalenda
Affiliation:
Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 86, 186 75 Praha 8, Czech Republic
Email:
kalenda@karlin.mff.cuni.cz
Antonio M. Peralta
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
Email:
aperalta@ugr.es
Hermann Pfitzner
Affiliation:
Université d’Orléans, BP 6759, F-45067 Orléans Cedex 2, France
Email:
hermann.pfitzner@univ-orleans.fr
DOI:
https://doi.org/10.1090/tran/8227
Keywords:
Grothendieck's inequality,
little Grothendieck inequality,
JB$^*$-triple,
JBW$^*$-triple
Received by editor(s):
May 8, 2020
Received by editor(s) in revised form:
June 19, 2020
Published electronically:
November 12, 2020
Additional Notes:
The first two authors were supported in part by the Research Grant GAČR 17-00941S. The first author was partly supported further by the project OP VVV Center for Advanced Applied Science CZ.02.1.01/0.0/0.0/16_019/000077. The third author was partially supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and European Regional Development Fund project no. PGC2018-093332-B-I00, Programa Operativo FEDER 2014-2020 and Consejería de Economía y Conocimiento de la Junta de Andalucía grant number A-FQM-242-UGR18 and by Junta de Andalucía grant FQM375.
Article copyright:
© Copyright 2020
American Mathematical Society