On a theorem of Bertolini-Darmon on the rationality of Stark-Heegner points over genus fields of real quadratic fields
HTML articles powered by AMS MathViewer
- by Chung Pang Mok PDF
- Trans. Amer. Math. Soc. 374 (2021), 1391-1419 Request permission
Abstract:
In this paper, we remove certain hypotheses in the theorem of Bertolini-Darmon on the rationality of Stark-Heegner points over narrow genus class fields of real quadratic fields. Along the way, we establish that certain normalized special values of $L$-functions are squares of rational numbers, a result that is of independent interest, and can be regarded as instances of the rank zero case of the Birch and Swinnerton-Dyer conjecture modulo squares.References
- J.-F. Boutot and H. Carayol, Uniformisation $p$-adique des courbes de Shimura: les thĂ©orĂšmes de Äerednik et de DrinfelâČd, AstĂ©risque 196-197 (1991), 7, 45â158 (1992) (French, with English summary). Courbes modulaires et courbes de Shimura (Orsay, 1987/1988). MR 1141456
- Massimo Bertolini and Henri Darmon, The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. of Math. (2) 170 (2009), no. 1, 343â370. MR 2521118, DOI 10.4007/annals.2009.170.343
- Massimo Bertolini and Henri Darmon, Hida families and rational points on elliptic curves, Invent. Math. 168 (2007), no. 2, 371â431. MR 2289868, DOI 10.1007/s00222-007-0035-4
- J.-F. Boutot, T. Zink, The $p$-adic uniformization of Shimura curves. Preprint, 1995.
- Kevin Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), no. 3, 591â612. MR 1446619, DOI 10.1215/S0012-7094-97-08719-6
- Henri Carayol, Sur la mauvaise rĂ©duction des courbes de Shimura, Compositio Math. 59 (1986), no. 2, 151â230 (French). MR 860139
- I. V. Äerednik, Uniformization of algebraic curves by discrete arithmetic subgroups of $\textrm {PGL}_{2}(k_{w})$ with compact quotient spaces, Mat. Sb. (N.S.) 100(142) (1976), no. 1, 59â88, 165 (Russian). MR 0491706
- Li Cai, Jie Shu, and Ye Tian, Explicit Gross-Zagier and Waldspurger formulae, Algebra Number Theory 8 (2014), no. 10, 2523â2572. MR 3298547, DOI 10.2140/ant.2014.8.2523
- Henri Darmon, Integration on $\scr H_p\times \scr H$ and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589â639. MR 1884617, DOI 10.2307/3062142
- Alyson Deines, Shimura Degrees for Elliptic Curves over Number Fields, ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)âUniversity of Washington. MR 3271859
- P. Deligne and M. Rapoport, Les schĂ©mas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 143â316 (French). MR 0337993
- V. G. DrinfelâČd, Coverings of $p$-adic symmetric domains, Funkcional. Anal. i PriloĆŸen. 10 (1976), no. 2, 29â40 (Russian). MR 0422290
- Solomon Friedberg and Jeffrey Hoffstein, Nonvanishing theorems for automorphic $L$-functions on $\textrm {GL}(2)$, Ann. of Math. (2) 142 (1995), no. 2, 385â423. MR 1343325, DOI 10.2307/2118638
- Ralph Greenberg and Glenn Stevens, $p$-adic $L$-functions and $p$-adic periods of modular forms, Invent. Math. 111 (1993), no. 2, 407â447. MR 1198816, DOI 10.1007/BF01231294
- Benedict H. Gross, Heights and the special values of $L$-series, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115â187. MR 894322
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225â320. MR 833192, DOI 10.1007/BF01388809
- A. Grothendieck, SGA7 I, Exposé IX, Lecture Notes in Math., Vol. 288, Springer-Verlag, Berlin/New York, 1972, pp. 313-523.
- Benjamin Howard, Twisted Gross-Zagier theorems, Canad. J. Math. 61 (2009), no. 4, 828â887. MR 2541387, DOI 10.4153/CJM-2009-044-1
- Matteo Longo, Kimball Martin, and Yan Hu, Rationality of Darmon points over genus fields of non-maximal orders, Ann. Math. QuĂ©. 44 (2020), no. 1, 173â195 (English, with English and French summaries). MR 4071876, DOI 10.1007/s40316-019-00116-3
- Bruce W. Jordan and Ron A. LivnĂ©, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), no. 2, 235â248. MR 771981, DOI 10.1007/BF01456184
- V. A. Kolyvagin, The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1154â1180, 1327 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 3, 473â499. MR 984214, DOI 10.1070/IM1989v033n03ABEH000853
- V. A. Kolyvagin and D. Yu. LogachĂ«v, Finiteness of SH over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 4, 851â876 (Russian); English transl., Math. USSR-Izv. 39 (1992), no. 1, 829â853. MR 1137589, DOI 10.1070/IM1992v039n01ABEH002228
- Akira Kurihara, On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1979), no. 3, 277â300. MR 523989
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1â48. MR 830037, DOI 10.1007/BF01388731
- Chung Pang Mok, Heegner points and $p$-adic $L$-functions for elliptic curves over certain totally real fields, Comment. Math. Helv. 86 (2011), no. 4, 867â945. MR 2851872, DOI 10.4171/CMH/243
- Chung Pang Mok, Special values of $L$-functions of elliptic curves over $\Bbb Q$ and their base change to real quadratic fields, J. Number Theory 130 (2010), no. 2, 431â438. MR 2564905, DOI 10.1016/j.jnt.2009.08.011
- Chung Pang Mok, Corrigendum and addendum to âSpecial values of $L$-functions of elliptic curves over $\mathbf {Q}$ and their base change to real quadratic fieldsâ [J. Number Theory 130 (2) (2010) 431â438] [ MR2564905], J. Number Theory 183 (2018), 495â499. MR 3715249, DOI 10.1016/j.jnt.2017.08.036
- M. Ram Murty and V. Kumar Murty, Non-vanishing of $L$-functions and applications, Progress in Mathematics, vol. 157, BirkhÀuser Verlag, Basel, 1997. MR 1482805, DOI 10.1007/978-3-0348-0274-1
- Jan NekovĂĄĆ, Level raising and anticyclotomic Selmer groups for Hilbert modular forms of weight two, Canad. J. Math. 64 (2012), no. 3, 588â668. MR 2962318, DOI 10.4153/CJM-2011-077-6
- A. P. Ogg, Elliptic curves and wild ramification, Amer. J. Math. 89 (1967), 1â21. MR 207694, DOI 10.2307/2373092
- Vivek Pal, Periods of quadratic twists of elliptic curves, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1513â1525. With an appendix by Amod Agashe. MR 2869136, DOI 10.1090/S0002-9939-2011-11014-1
- M. Raynaud, SpĂ©cialisation du foncteur de Picard, Inst. Hautes Ătudes Sci. Publ. Math. 38 (1970), 27â76 (French). MR 282993
- K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431â476. MR 1047143, DOI 10.1007/BF01231195
- Kenneth A. Ribet and Shuzo Takahashi, Parametrizations of elliptic curves by Shimura curves and by classical modular curves, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 21, 11110â11114. Elliptic curves and modular forms (Washington, DC, 1996). MR 1491967, DOI 10.1073/pnas.94.21.11110
- Karl Rubin, Fudge factors in the Birch and Swinnerton-Dyer conjecture, Ranks of elliptic curves and random matrix theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 233â236. MR 2322348, DOI 10.1017/CBO9780511735158.014
- Shuzo Takahashi, Degrees of parametrizations of elliptic curves by Shimura curves, J. Number Theory 90 (2001), no. 1, 74â88. MR 1850874, DOI 10.1006/jnth.2000.2614
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975, pp. 33â52. MR 0393039
- John Tate, A review of non-Archimedean elliptic functions, Elliptic curves, modular forms, & Fermatâs last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 162â184. MR 1363501
- J.-L. Waldspurger, Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symĂ©trie, Compositio Math. 54 (1985), no. 2, 173â242 (French). MR 783511
- Shouwu Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), no. 1, 27â147. MR 1826411, DOI 10.2307/2661372
- Shou-Wu Zhang, Gross-Zagier formula for $\rm GL(2)$. II, Heegner points and Rankin $L$-series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge Univ. Press, Cambridge, 2004, pp. 191â214. MR 2083213, DOI 10.1017/CBO9780511756375.008
Additional Information
- Chung Pang Mok
- Affiliation: School of Mathematical Sciences, Soochow University, 1 Shi-Zi Street, Suzhou 215006, Jiangsu Province, China
- MR Author ID: 805641
- Email: zpmo@suda.edu.cn
- Received by editor(s): September 12, 2019
- Received by editor(s) in revised form: July 3, 2020
- Published electronically: November 25, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 1391-1419
- MSC (2020): Primary 11G05, 11G40
- DOI: https://doi.org/10.1090/tran/8254
- MathSciNet review: 4196397