A simplicial approach to stratified homotopy theory
HTML articles powered by AMS MathViewer
- by Sylvain Douteau PDF
- Trans. Amer. Math. Soc. 374 (2021), 955-1006 Request permission
Abstract:
In this article we consider the homotopy theory of stratified spaces from a simplicial point of view. We first consider a model category of filtered simplicial sets over some fixed poset $P$, and show that it is a simplicial combinatorial model category. We then define a generalization of the homotopy groups for any fibrant filtered simplicial set $X$ : the filtered homotopy groups $s\pi _n(X)$. They are diagrams of groups built from the homotopy groups of the different pieces of $X$. We then show that the weak equivalences are exactly the morphisms that induce isomorphisms on those filtered homotopy groups.
Then, using filtered versions of the topological realisation of a simplicial set and of the simplicial set of singular simplices, we transfer those results to a category whose objects are topological spaces stratified over $P$. In particular, we get a stratified version of Whitehead’s theorem. Specializing to the case of conically stratified spaces, a wide class of topological stratified spaces, we recover a theorem of Miller saying that to understand the homotopy type of conically stratified spaces, one only has to understand the homotopy type of strata and holinks. We then provide a family of examples of conically stratified spaces and of computations of their filtered homotopy groups.
References
- David Ayala, John Francis, and Nick Rozenblyum, A stratified homotopy hypothesis, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 4, 1071–1178. MR 3941460, DOI 10.4171/JEMS/856
- David Ayala, John Francis, and Hiro Lee Tanaka, Local structures on stratified spaces, Adv. Math. 307 (2017), 903–1028. MR 3590534, DOI 10.1016/j.aim.2016.11.032
- A. Borel and et al., Intersection cohomology, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. Notes on the seminar held at the University of Bern, Bern, 1983; Reprint of the 1984 edition. MR 2401086
- Markus Banagl, Rational generalized intersection homology theories, Homology Homotopy Appl. 12 (2010), no. 1, 157–185. MR 2607414
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Hans-Joachim Baues and Davide L. Ferrario, Stratified fibre bundles, Forum Math. 16 (2004), no. 6, 865–902. MR 2096475, DOI 10.1515/form.2004.16.6.865
- Denis-Charles Cisinski, Les préfaisceaux comme modèles des types d’homotopie, Astérisque 308 (2006), xxiv+390 (French, with English and French summaries). MR 2294028
- Denis-Charles Cisinski, Higher categories and homotopical algebra, Cambridge Studies in Advanced Mathematics, vol. 180, Cambridge University Press, Cambridge, 2019. MR 3931682, DOI 10.1017/9781108588737
- David Chataur, Martintxo Saralegi-Aranguren, and Daniel Tanré, Intersection cohomology, simplicial blow-up and rational homotopy, Mem. Amer. Math. Soc. 254 (2018), no. 1214, viii+108. MR 3796432, DOI 10.1090/memo/1214
- Alexandru Dimca, Sheaves in topology, Universitext, Springer-Verlag, Berlin, 2004. MR 2050072, DOI 10.1007/978-3-642-18868-8
- S. Douteau, Étude homotopique des espaces stratifiés, PhD thesis, Université de Picardie, July 2019. available at arXiv:1908.01366.
- Greg Friedman and James E. McClure, Cup and cap products in intersection (co)homology, Adv. Math. 240 (2013), 383–426. MR 3046315, DOI 10.1016/j.aim.2013.02.017
- Greg Friedman, Singular Intersection Homology, http://faculty.tcu.edu/gfriedman/IHbook.pdf.
- PawełGajer, The intersection Dold-Thom theorem, Topology 35 (1996), no. 4, 939–967. MR 1404919, DOI 10.1016/0040-9383(95)00053-4
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR 2840650, DOI 10.1007/978-3-0346-0189-4
- Mark Goresky and Robert MacPherson, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. MR 572580, DOI 10.1016/0040-9383(80)90003-8
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130
- Mark Goresky, Introduction to the papers of R. Thom and J. Mather [MR0239613; MR2958928], Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4, 469–474. MR 2958927, DOI 10.1090/S0273-0979-2012-01382-4
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- Peter J. Haine, On the homotopy theory of stratified spaces, arXiv e-prints, arXiv:1811.01119, November 2018.
- A. Henriques, A model category for stratified spaces, Preprint available at http://andreghenriques.com/PDF/Model_Cat_Stratified_spaces.pdf.
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- André Joyal, The Theory of Quasi-categories and its Applications, http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf.
- Henry C. King, Topological invariance of intersection homology without sheaves, Topology Appl. 20 (1985), no. 2, 149–160. MR 800845, DOI 10.1016/0166-8641(85)90075-6
- Frances Kirwan and Jonathan Woolf, An introduction to intersection homology theory, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2207421, DOI 10.1201/b15885
- Jacob Lurie, Higher Algebra, http://www.math.harvard.edu/~lurie/papers/HA.pdf.
- John Mather, Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4, 475–506. MR 2958928, DOI 10.1090/S0273-0979-2012-01383-6
- David A. Miller, Strongly stratified homotopy theory, Trans. Amer. Math. Soc. 365 (2013), no. 9, 4933–4962. MR 3066775, DOI 10.1090/S0002-9947-2013-05795-9
- Sean Moss, Another approach to the Kan-Quillen model structure, J. Homotopy Relat. Struct. 15 (2020), no. 1, 143–165. MR 4062882, DOI 10.1007/s40062-019-00247-y
- Stephen Nand-Lal, A simplicial appraoch to stratified homotopy theory, PhD thesis, University of Liverpool, 2019.
- Frank Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988), no. 2, 441–499. MR 928266, DOI 10.1090/S0894-0347-1988-0928266-2
- R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284 (French). MR 239613, DOI 10.1090/S0002-9904-1969-12138-5
- David Treumann, Exit paths and constructible stacks, Compos. Math. 145 (2009), no. 6, 1504–1532. MR 2575092, DOI 10.1112/S0010437X09004229
- Hassler Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496–549. MR 192520, DOI 10.2307/1970400
- Jon Woolf, The fundamental category of a stratified space, J. Homotopy Relat. Struct. 4 (2009), no. 1, 359–387. MR 2591969
Additional Information
- Sylvain Douteau
- Affiliation: LAMFA CNRS UMR 7352 - Université de Picardie Jules Verne, Amiens, France
- MR Author ID: 1344860
- Received by editor(s): August 4, 2018
- Received by editor(s) in revised form: March 20, 2020
- Published electronically: November 25, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 955-1006
- MSC (2010): Primary 55U35, 57N80, 18G30, 18G55
- DOI: https://doi.org/10.1090/tran/8264
- MathSciNet review: 4196384