Simple supermodules over Lie superalgebras
Authors:
Chih-Whi Chen and Volodymyr Mazorchuk
Journal:
Trans. Amer. Math. Soc. 374 (2021), 899-921
MSC (2010):
Primary 16E30, 17B10
DOI:
https://doi.org/10.1090/tran/8303
Published electronically:
December 3, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We show that, for many Lie superalgebras admitting a compatible -grading, the Kac induction functor gives rise to a bijection between simple supermodules over a Lie superalgebra and simple supermodules over the even part of this Lie superalgebra. This reduces the classification problem for the former to the one for the latter. Our result applies to all classical Lie superalgebras of type
, in particular, to the general linear Lie superalgebra
. In the latter case we also show that the rough structure of simple
-supermodules and also that of Kac supermodules depends only on the annihilator of the
-input and hence can be computed using the combinatorics of BGG category
.
- [BCW] Irfan Bagci, Konstantina Christodoulopoulou, and Emilie Wiesner, Whittaker categories and Whittaker modules for Lie superalgebras, Comm. Algebra 42 (2014), no. 11, 4932–4947. MR 3210421, https://doi.org/10.1080/00927872.2013.827692
- [BO] V. Bavula and F. van Oystaeyen, The simple modules of the Lie superalgebra 𝑜𝑠𝑝(1,2), J. Pure Appl. Algebra 150 (2000), no. 1, 41–52. MR 1762919, https://doi.org/10.1016/S0022-4049(99)00024-9
- [BF] Allen D. Bell and Rolf Farnsteiner, On the theory of Frobenius extensions and its application to Lie superalgebras, Trans. Amer. Math. Soc. 335 (1993), no. 1, 407–424. MR 1097163, https://doi.org/10.1090/S0002-9947-1993-1097163-5
- [BG] J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- [BGG] I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, A certain category of 𝔤-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8 (Russian). MR 0407097
- [Bl] Richard E. Block, The irreducible representations of the Lie algebra 𝔰𝔩(2) and of the Weyl algebra, Adv. in Math. 39 (1981), no. 1, 69–110. MR 605353, https://doi.org/10.1016/0001-8708(81)90058-X
- [BM] Carina Boyallian and Vanesa Meinardi, Irreducible continuous representations of the simple linearly compact 𝑛-Lie superalgebra of type 𝑊, J. Algebra 490 (2017), 493–517. MR 3690345, https://doi.org/10.1016/j.jalgebra.2017.07.014
- [CZ] Yan-an Cai and Kaiming Zhao, Module structure on \Cal𝑈(𝐻) for basic Lie superalgebras, Toyama Math. J. 37 (2015), 55–72. MR 3468990
- [CW] Shun-Jen Cheng and Weiqiang Wang, Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, vol. 144, American Mathematical Society, Providence, RI, 2012. MR 3012224
- [CCM] C.-W. Chen, K. Coulembier, and V. Mazorchuk, Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras, to appear in Mathematische Zeitschrift. Preprint 1807.03834
- [CMW] Shun-Jen Cheng, Volodymyr Mazorchuk, and Weiqiang Wang, Equivalence of blocks for the general linear Lie superalgebra, Lett. Math. Phys. 103 (2013), no. 12, 1313–1327. MR 3117249, https://doi.org/10.1007/s11005-013-0642-5
- [Co] Kevin Coulembier, The primitive spectrum of a basic classical Lie superalgebra, Comm. Math. Phys. 348 (2016), no. 2, 579–602. MR 3554895, https://doi.org/10.1007/s00220-016-2667-y
- [DMP] Ivan Dimitrov, Olivier Mathieu, and Ivan Penkov, On the structure of weight modules, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2857–2869. MR 1624174, https://doi.org/10.1090/S0002-9947-00-02390-4
- [Di] Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197
- [Du2] Michel Duflo, Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Ann. of Math. (2) 105 (1977), no. 1, 107–120. MR 430005, https://doi.org/10.2307/1971027
- [FGG] Thomas Ferguson, Maria Gorelik, and Dimitar Grantcharov, Bounded highest weight modules over 𝔬𝔰𝔭(1,2𝔫), Lie algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., vol. 92, Amer. Math. Soc., Providence, RI, 2016, pp. 135–144. MR 3644229
- [Ge] Jérôme Germoni, Indecomposable representations of special linear Lie superalgebras, J. Algebra 209 (1998), no. 2, 367–401. MR 1659915, https://doi.org/10.1006/jabr.1998.7520
- [Go1] Maria Gorelik, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 6, 1745–1764 (2001). MR 1817382
- [Go2] Maria Gorelik, Annihilation theorem and separation theorem for basic classical Lie superalgebras, J. Amer. Math. Soc. 15 (2002), no. 1, 113–165. MR 1862799, https://doi.org/10.1090/S0894-0347-01-00382-4
- [Go3] Maria Gorelik, Strongly typical representations of the basic classical Lie superalgebras, J. Amer. Math. Soc. 15 (2002), no. 1, 167–184. MR 1862800, https://doi.org/10.1090/S0894-0347-01-00381-2
- [GG] Maria Gorelik and Dimitar Grantcharov, Bounded highest weight modules over 𝔮(𝔫), Int. Math. Res. Not. IMRN 22 (2014), 6111–6154. MR 3283000, https://doi.org/10.1093/imrn/rnt147
- [Gr] Dimitar Grantcharov, Coherent families of weight modules of Lie superalgebras and an explicit description of the simple admissible 𝔰𝔩(𝔫+1|1)-modules, J. Algebra 265 (2003), no. 2, 711–733. MR 1987026, https://doi.org/10.1016/S0021-8693(03)00169-8
- [IS] Ronald S. Irving and Brad Shelton, Loewy series and simple projective modules in the category 𝒪_{𝒮}, Pacific J. Math. 132 (1988), no. 2, 319–342. MR 934173
- [Ja] J. C. Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 393–401 (German). MR 804695
- [Jo] A. Joseph, Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture, Invent. Math. 56 (1980), no. 3, 191–213. MR 561970, https://doi.org/10.1007/BF01390044
- [Ka] V. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 597–626. MR 519631
- [KM] Oleksandr Khomenko and Volodymyr Mazorchuk, Structure of modules induced from simple modules with minimal annihilator, Canad. J. Math. 56 (2004), no. 2, 293–309. MR 2040917, https://doi.org/10.4153/CJM-2004-014-5
- [Ma3] Volodymyr Mazorchuk, Classification of simple 𝔮₂-supermodules, Tohoku Math. J. (2) 62 (2010), no. 3, 401–426. MR 2742017, https://doi.org/10.2748/tmj/1287148620
- [MM] Volodymyr Mazorchuk and Vanessa Miemietz, Serre functors for Lie algebras and superalgebras, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 1, 47–75 (English, with English and French summaries). MR 2986264
- [MS] Volodymyr Mazorchuk and Catharina Stroppel, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219 (2008), no. 4, 1363–1426. MR 2450613, https://doi.org/10.1016/j.aim.2008.06.019
- [Mu1] Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), no. 2, 252–268. MR 1149625, https://doi.org/10.1016/0001-8708(92)90018-G
- [Mu2] Ian M. Musson, Lie superalgebras and enveloping algebras, Graduate Studies in Mathematics, vol. 131, American Mathematical Society, Providence, RI, 2012. MR 2906817
- [Sc06] Manfred Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics, vol. 716, Springer, Berlin, 1979. An introduction. MR 537441
- [Se02] Vera Serganova, On representations of the Lie superalgebra 𝑝(𝑛), J. Algebra 258 (2002), no. 2, 615–630. MR 1943937, https://doi.org/10.1016/S0021-8693(02)00645-2
- [WZZ] Zhu Wei, Yongzheng Zhang, and Qingcheng Zhang, Simple modules for some Cartan-type Lie superalgebras, Hacet. J. Math. Stat. 44 (2015), no. 1, 129–152. MR 3363771
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E30, 17B10
Retrieve articles in all journals with MSC (2010): 16E30, 17B10
Additional Information
Chih-Whi Chen
Affiliation:
Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden; and Department of Mathematics, National Central University, Chung-Li, Taiwan 32054
Email:
cwchen@math.ncu.edu.tw
Volodymyr Mazorchuk
Affiliation:
Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden
Email:
mazor@math.uu.se
DOI:
https://doi.org/10.1090/tran/8303
Received by editor(s):
September 27, 2018
Received by editor(s) in revised form:
January 14, 2020
Published electronically:
December 3, 2020
Additional Notes:
The first author was supported by Vergstiftelsen and an MoST grant
The second author was supported by the Swedish Research Council and Göran Gustafsson Stiftelser.
Article copyright:
© Copyright 2020
American Mathematical Society