Euler characteristics of Brill-Noether varieties
HTML articles powered by AMS MathViewer
- by Melody Chan and Nathan Pflueger PDF
- Trans. Amer. Math. Soc. 374 (2021), 1513-1533 Request permission
Abstract:
We prove an enumerative formula for the algebraic Euler characteristic of Brill-Noether varieties, parametrizing degree $d$ and rank $r$ linear series on a general genus $g$ curve, with ramification profiles specified at up to two general points. Up to sign, this Euler characteristic is the number of standard set-valued tableaux of a certain skew shape with $g$ labels. We use a flat degeneration via the Eisenbud-Harris theory of limit linear series, relying on moduli-theoretic advances of Osserman and Murray-Osserman; the count of set-valued tableaux is an explicit enumeration of strata of this degeneration.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Dave Anderson, Linda Chen, and Nicola Tarasca, K-classes of Brill-Noether loci and a determinantal formula, arXiv:1705.02992, 2017.
- Anders Skovsted Buch, A Littlewood-Richardson rule for the $K$-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37–78. MR 1946917, DOI 10.1007/BF02392644
- Melody Chan, Alberto López Martín, Nathan Pflueger, and Montserrat Teixidor i Bigas, Genera of Brill-Noether curves and staircase paths in Young tableaux, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3405–3439. MR 3766853, DOI 10.1090/tran/7044
- Abel Castorena, Alberto López Martín, and Montserrat Teixidor i Bigas, Invariants of the Brill-Noether curve, Adv. Geom. 17 (2017), no. 1, 39–52. MR 3652231, DOI 10.1515/advgeom-2016-0027
- Melody Chan and Nathan Pflueger, Combinatorial relations on skew Schur and skew stable Grothendieck polynomials, preprint, arXiv:1909.12833, 2018.
- Melody Chan and Nathan Pflueger, Relative Richardson varieties, preprint, arXiv:1909.12414, 2019.
- D. Eisenbud and J. Harris, Divisors on general curves and cuspidal rational curves, Invent. Math. 74 (1983), no. 3, 371–418. MR 724011, DOI 10.1007/BF01394242
- David Eisenbud and Joe Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), no. 2, 337–371. MR 846932, DOI 10.1007/BF01389094
- Phillip Griffiths and Joseph Harris, On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), no. 1, 233–272. MR 563378
- John Murray and Brian Osserman, Linked determinantal loci and limit linear series, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2399–2410. MR 3477056, DOI 10.1090/proc/12965
- Brian Osserman, Limit linear series, draft monograph, https://www.math.ucdavis.edu/~osserman/math/llsbook.pdf.
- Brian Osserman, Limit linear series for curves not of compact type, J. Reine Angew. Math. 753 (2019), 57–88. MR 3987864, DOI 10.1515/crelle-2017-0003
- Brian Osserman, Limit linear series moduli stacks in higher rank, arXiv:1405.2937, 2014.
- Brian Osserman, A simple characteristic-free proof of the Brill-Noether theorem, Bull. Braz. Math. Soc. (N.S.) 45 (2014), no. 4, 807–818. MR 3296194, DOI 10.1007/s00574-014-0076-4
- Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR 1442260, DOI 10.1017/CBO9780511805967
- Nicola Tarasca, Brill-Noether loci in codimension two, Compos. Math. 149 (2013), no. 9, 1535–1568. MR 3109733, DOI 10.1112/S0010437X13007215
- Gerald E. Welters, A theorem of Gieseker-Petri type for Prym varieties, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 671–683. MR 839690, DOI 10.24033/asens.1500
Additional Information
- Melody Chan
- Affiliation: Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912
- MR Author ID: 791839
- Email: melody_chan@brown.edu
- Nathan Pflueger
- Affiliation: Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts 01002
- MR Author ID: 950261
- ORCID: 0000-0002-9579-9630
- Email: npflueger@amherst.edu
- Received by editor(s): October 17, 2019
- Received by editor(s) in revised form: February 13, 2020
- Published electronically: November 3, 2020
- Additional Notes: The first author was supported by an NSA Young Investigators Grant, NSF DMS-1701924, and a Sloan Research Fellowship.
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 1513-1533
- MSC (2010): Primary 14H51, 14M15, 05E05
- DOI: https://doi.org/10.1090/tran/8164
- MathSciNet review: 4216716