Model theory of proalgebraic groups
HTML articles powered by AMS MathViewer
- by Anand Pillay and Michael Wibmer PDF
- Trans. Amer. Math. Soc. 374 (2021), 2225-2267 Request permission
Abstract:
We lay the foundations for a model theoretic study of proalgebraic groups. Our axiomatization is based on the tannakian philosophy. Through a tensor analog of skeletal categories we are able to consider neutral tannakian categories with a fibre functor as many-sorted first order structures. The class of diagonalizable proalgebraic groups is analyzed in detail. We show that the theory of a diagonalizable proalgebraic group $G$ is determined by the theory of the base field and the theory of the character group of $G$. Some initial steps towards a comprehensive study of types are also made.References
- Jiří Adámek, Horst Herrlich, and George E. Strecker, Abstract and concrete categories, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. The joy of cats; A Wiley-Interscience Publication. MR 1051419
- Matthias Aschenbrenner, Ideal membership in polynomial rings over the integers, J. Amer. Math. Soc. 17 (2004), no. 2, 407–441. MR 2051617, DOI 10.1090/S0894-0347-04-00451-5
- Annette Bachmayr, David Harbater, Julia Hartmann, and Michael Wibmer, Free differential Galois groups, arXiv:1904.07806. Transactions of the American Mathematical Society, to appear.
- Zoe Maria Chatzidakis, MODEL THEORY OF PROFINITE GROUPS, ProQuest LLC, Ann Arbor, MI, 1984. Thesis (Ph.D.)–Yale University. MR 2634100
- Zoé Chatzidakis, Model theory of profinite groups having IP. III, Mathematical logic and theoretical computer science (College Park, Md., 1984–1985) Lecture Notes in Pure and Appl. Math., vol. 106, Dekker, New York, 1987, pp. 161–195. MR 930680
- Zoé Chatzidakis, Model theory of profinite groups having the Iwasawa property, Illinois J. Math. 42 (1998), no. 1, 70–96. MR 1492040
- Gregory Cherlin, Lou van den Dries, and Angus Macintyre, Decidability and undecidability theorems for PAC-fields, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 101–104. MR 590820, DOI 10.1090/S0273-0979-1981-14872-2
- Gregory Cherlin, Lou van den Dries, and Angus Macintyre, The elementary theory of regularly closed fields, preprint, 1982.
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- Paul C. Eklof and Edward R. Fischer, The elementary theory of abelian groups, Ann. Math. Logic 4 (1972), 115–171. MR 540003, DOI 10.1016/0003-4843(72)90013-7
- Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015. MR 3242743, DOI 10.1090/surv/205
- Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), no. 1, 736–788 (German). MR 1512302, DOI 10.1007/BF01206635
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741, DOI 10.1017/CBO9780511551574
- Moshe Kamensky, Model theory and the Tannakian formalism, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1095–1120. MR 3280038, DOI 10.1090/S0002-9947-2014-06062-5
- J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field. MR 3729270, DOI 10.1017/9781316711736
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- T. A. Springer, Linear algebraic groups, 2nd ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. MR 2458469
- Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772, DOI 10.1007/978-3-642-55750-7
- Albert Visser, Categories of theories and interpretations, Logic in Tehran, Lect. Notes Log., vol. 26, Assoc. Symbol. Logic, La Jolla, CA, 2006, pp. 284–341. MR 2262326
- William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117, DOI 10.1007/978-1-4612-6217-6
- Michael Wibmer, Free proalgebraic groups, Épijournal Géom. Algébrique 4 (2020), Art. 1, 36 (English, with English and French summaries). MR 4073119, DOI 10.46298/epiga.2020.volume4.5733
Additional Information
- Anand Pillay
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556-4618
- MR Author ID: 139610
- Email: apillay@nd.edu
- Michael Wibmer
- Affiliation: Institute of Analysis of Number Theory, Graz University of Technology, 8010 Graz, Austria
- MR Author ID: 764347
- Email: wibmer@math.tugraz.at
- Received by editor(s): November 13, 2019
- Received by editor(s) in revised form: September 4, 2020
- Published electronically: December 15, 2020
- Additional Notes: The first author was supported by the NSF grants DMS-1360702, DMS-1665035 and DMS-1760212. The second author was supported by the NSF grants DMS-1760212, DMS-1760413, DMS-1760448 and the Lise Meitner grant M-2582-N32 of the Austrian Science Fund FWF
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2225-2267
- MSC (2020): Primary 03C60, 03C65, 14L15, 14L17, 20G05
- DOI: https://doi.org/10.1090/tran/8304
- MathSciNet review: 4216738