Statistical limit laws for hyperbolic groups
Author:
Stephen Cantrell
Journal:
Trans. Amer. Math. Soc. 374 (2021), 2687-2732
MSC (2020):
Primary 37D40; Secondary 20F10, 20F67, 20F65
DOI:
https://doi.org/10.1090/tran/8266
Published electronically:
December 18, 2020
MathSciNet review:
4223030
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Using techniques from ergodic theory and symbolic dynamics, we derive statistical limit laws for real valued functions on hyperbolic groups. In particular, our results apply to convex cocompact group actions on $\text {CAT}(-1)$ spaces, and provide a precise statistical comparison between word length and displacement. After generalising our methods to the multidimensional setting, we prove that the abelianisation map satisfies a non-degenerate multidimensional central limit theorem. We also obtain local limit theorems for group homomorphisms and for the displacement function associated to certain actions.
- Jean Barge and Étienne Ghys, Surfaces et cohomologie bornée, Invent. Math. 92 (1988), no. 3, 509–526 (French). MR 939473, DOI https://doi.org/10.1007/BF01393745
- Rajendra Bhatia and K. R. Parthasarathy, Lectures on functional analysis. Part I, ISI Lecture Notes, vol. 3, Macmillan Co. of India, Ltd., New Delhi, 1978. Perturbation by bounded operators. MR 506158
- Robert Brooks, Some remarks on bounded cohomology, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 53–63. MR 624804
- Danny Calegari, The ergodic theory of hyperbolic groups, Geometry and topology down under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, pp. 15–52. MR 3186668, DOI https://doi.org/10.1090/conm/597/11762
- Danny Calegari and Koji Fujiwara, Combable functions, quasimorphisms, and the central limit theorem, Ergodic Theory Dynam. Systems 30 (2010), no. 5, 1343–1369. MR 2718897, DOI https://doi.org/10.1017/S0143385709000662
- James W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), no. 2, 123–148. MR 758901, DOI https://doi.org/10.1007/BF00146825
- Zaqueu Coelho and William Parry, Central limit asymptotics for shifts of finite type, Israel J. Math. 69 (1990), no. 2, 235–249. MR 1045376, DOI https://doi.org/10.1007/BF02937307
- Michel Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), no. 2, 241–270 (French, with French summary). MR 1214072
- Rémi Coulon, Françoise Dal’Bo, and Andrea Sambusetti, Growth gap in hyperbolic groups and amenability, Geom. Funct. Anal. 28 (2018), no. 5, 1260–1320. MR 3856793, DOI https://doi.org/10.1007/s00039-018-0459-6
- Françoise Dal’bo, Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), no. 2, 199–221 (French, with English and French summaries). MR 1703039, DOI https://doi.org/10.1007/BF01235869
- David B. A. Epstein and Koji Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997), no. 6, 1275–1289. MR 1452851, DOI https://doi.org/10.1016/S0040-9383%2896%2900046-8
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- Ilya Gekhtman, Samuel J. Taylor, and Giulio Tiozzo, Counting loxodromics for hyperbolic actions, J. Topol. 11 (2018), no. 2, 379–419. MR 3789828, DOI https://doi.org/10.1112/topo.12053
- Ilya Gekhtman, Samuel J. Taylor, and Giulio Tiozzo, A central limit theorem for random closed geodesics: proof of the Chas-Li-Maskit conjecture, Adv. Math. 358 (2019), 106852, 18. MR 4020454, DOI https://doi.org/10.1016/j.aim.2019.106852
- Ilya Gekhtman, Samuel J. Taylor, and Giulio Tiozzo, Counting problems in graph products and relatively hyperbolic groups, Israel J. Math. 237 (2020), no. 1, 311–371. MR 4111874, DOI https://doi.org/10.1007/s11856-020-2008-x
- É. Ghys and P. de la Harpe, Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics 83, 1990.
- Sébastien Gouëzel, Frédéric Mathéus, and François Maucourant, Entropy and drift in word hyperbolic groups, Invent. Math. 211 (2018), no. 3, 1201–1255. MR 3763407, DOI https://doi.org/10.1007/s00222-018-0788-y
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI https://doi.org/10.1007/978-1-4613-9586-7_3
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- M. Horsham, Central limit theorems for quasimorphisms of surface groups, PhD thesis, Manchester, 2008.
- Matthew Horsham and Richard Sharp, Lengths, quasi-morphisms and statistics for free groups, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 219–237. MR 1500150, DOI https://doi.org/10.1090/conm/484/09477
- Ilya Kapovich and Tatiana Nagnibeda, The Patterson-Sullivan embedding and minimal volume entropy for outer space, Geom. Funct. Anal. 17 (2007), no. 4, 1201–1236. MR 2373015, DOI https://doi.org/10.1007/s00039-007-0621-z
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1980.
- Steven G. Krantz, Function theory of several complex variables, AMS Chelsea Publishing, Providence, RI, 2001. Reprint of the 1992 edition. MR 1846625
- George Kenison and Richard Sharp, Statistics in conjugacy classes in free groups, Geom. Dedicata 198 (2019), 57–70. MR 3933450, DOI https://doi.org/10.1007/s10711-018-0329-2
- Steven P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989), no. 1-2, 1–55. MR 1007619, DOI https://doi.org/10.1007/BF02392732
- William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55–66. MR 161372, DOI https://doi.org/10.1090/S0002-9947-1964-0161372-1
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- Mark Pollicott and Richard Sharp, Comparison theorems and orbit counting in hyperbolic geometry, Trans. Amer. Math. Soc. 350 (1998), no. 2, 473–499. MR 1376553, DOI https://doi.org/10.1090/S0002-9947-98-01756-5
- Mark Pollicott and Richard Sharp, Poincaré series and comparison theorems for variable negative curvature, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, 2001, pp. 229–240. MR 1819191, DOI https://doi.org/10.1090/trans2/202/16
- Mark Pollicott and Richard Sharp, Statistics of matrix products in hyperbolic geometry, Dynamical numbers—interplay between dynamical systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc., Providence, RI, 2010, pp. 213–230. MR 2762142, DOI https://doi.org/10.1090/conm/532/10492
- Igor Rivin, Growth in free groups (and other stories)—twelve years later, Illinois J. Math. 54 (2010), no. 1, 327–370. MR 2776999
- J. Rousseau-Egele, Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Ann. Probab. 11 (1983), no. 3, 772–788 (French, with English summary). MR 704569
- Caroline Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 601–625. MR 873435, DOI https://doi.org/10.1017/S0143385700003722
- Richard Sharp, Local limit theorems for free groups, Math. Ann. 321 (2001), no. 4, 889–904. MR 1872533, DOI https://doi.org/10.1007/s002080100258
- Richard Sharp, Relative growth series in some hyperbolic groups, Math. Ann. 312 (1998), no. 1, 125–132. MR 1645953, DOI https://doi.org/10.1007/s002080050214
- Matthew Sunderland, Linear progress with exponential decay in weakly hyperbolic groups, Groups Geom. Dyn. 14 (2020), no. 2, 539–566. MR 4118628, DOI https://doi.org/10.4171/GGD/554
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 37D40, 20F10, 20F67, 20F65
Retrieve articles in all journals with MSC (2020): 37D40, 20F10, 20F67, 20F65
Additional Information
Stephen Cantrell
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
Email:
S.J.Cantrell@warwick.ac.uk
Received by editor(s):
June 3, 2019
Received by editor(s) in revised form:
April 20, 2020, April 27, 2020, June 24, 2020, and July 20, 2020
Published electronically:
December 18, 2020
Article copyright:
© Copyright 2020
American Mathematical Society