Perelman’s entropies for manifolds with conical singularities
Authors:
Klaus Kröncke and Boris Vertman
Journal:
Trans. Amer. Math. Soc. 374 (2021), 2873-2908
MSC (2020):
Primary 53E20; Secondary 53C25, 58C05
DOI:
https://doi.org/10.1090/tran/8295
Published electronically:
January 21, 2021
MathSciNet review:
4223036
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we discuss Perelman’s $\lambda$-functional, Perelman’s Ricci shrinker entropy as well as the Ricci expander entropy on a class of manifolds with isolated conical singularities. On such manifolds, a singular Ricci de Turck flow preserving the isolated conical singularities exists by our previous work. We prove that the entropies are monotone along the singular Ricci de Turck flow. We employ these entropies to show that in the singular setting, Ricci solitons are gradient and that steady or expanding Ricci solitons are Einstein.
- Pierre Albin and Jesse Gell-Redman, The index formula for families of dirac type operators on pseudomanifolds, arXiv:1712.08513[math.DG] 2017.
- Ben Andrews and Christopher Hopper, The Ricci flow in Riemannian geometry, Lecture Notes in Mathematics, vol. 2011, Springer, Heidelberg, 2011. A complete proof of the differentiable 1/4-pinching sphere theorem. MR 2760593
- Eric Bahuaud and Boris Vertman, Yamabe flow on manifolds with edges, Math. Nachr. 287 (2014), no. 2-3, 127–159. MR 3163570, DOI https://doi.org/10.1002/mana.201200210
- Eric Bahuaud and Boris Vertman, Long-time existence of the edge Yamabe flow, J. Math. Soc. Japan 71 (2019), no. 2, 651–688. MR 3943455, DOI https://doi.org/10.2969/jmsj/78147814
- Werner Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2006. MR 2243012
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720
- Arthur L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. MR 2371700
- J. Brüning and M. Lesch, Kähler-Hodge theory for conformal complex cones, Geom. Funct. Anal. 3 (1993), no. 5, 439–473. MR 1233862, DOI https://doi.org/10.1007/BF01896238
- Huai-Dong Cao, Richard S. Hamilton, and Tom Ilmanen, Gaussian densities and stability for some Ricci solitons, preprint on arXiv:math/0404165 [math.DG] 2004
- Huai-Dong Cao and Chenxu He, Linear stability of Perelman’s $\nu $-entropy on symmetric spaces of compact type, J. Reine Angew. Math. 709 (2015), 229–246. MR 3430881, DOI https://doi.org/10.1515/crelle-2013-0096
- Huai-Dong Cao and Meng Zhu, On second variation of Perelman’s Ricci shrinker entropy, Math. Ann. 353 (2012), no. 3, 747–763. MR 2923948, DOI https://doi.org/10.1007/s00208-011-0701-0
- Xiuxiong Chen and Yuanqi Wang, Bessel functions, heat kernel and the conical Kähler-Ricci flow, J. Funct. Anal. 269 (2015), no. 2, 551–632. MR 3348827, DOI https://doi.org/10.1016/j.jfa.2015.01.015
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI, 2007. Geometric aspects. MR 2302600
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, Mathematical Surveys and Monographs, vol. 163, American Mathematical Society, Providence, RI, 2010. MR 2604955
- Xianzhe Dai and Changliang Wang, Perelman’s W-functional on manifolds with conical singularities, to appear in: Math. Res. Lett.
- Xianzhe Dai and Changliang Wang, Perelman’s $\lambda $-functional on manifolds with conical singularities, J. Geom. Anal. 28 (2018), no. 4, 3657–3689. MR 3881984, DOI https://doi.org/10.1007/s12220-017-9971-4
- Alix Deruelle, Smoothing out positively curved metric cones by Ricci expanders, Geom. Funct. Anal. 26 (2016), no. 1, 188–249. MR 3494489, DOI https://doi.org/10.1007/s00039-016-0360-0
- Alix Deruelle and Klaus Kröncke, Stability of ALE Ricci flat manifolds under Ricci flow, to appear in: J. Geom. Anal.
- S. K. Donaldson, Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 49–79. MR 2975584, DOI https://doi.org/10.1007/978-3-642-28821-0_4
- Michael Feldman, Tom Ilmanen, and Lei Ni, Entropy and reduced distance for Ricci expanders, J. Geom. Anal. 15 (2005), no. 1, 49–62. MR 2132265, DOI https://doi.org/10.1007/BF02921858
- S. Gallot, Équations différentielles caractéristiques de la sphère, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 235–267 (French). MR 543217
- Jesse Gell-Redman and Jan Swoboda, Spectral and Hodge theory of “Witt” incomplete cusp edge spaces, Comment. Math. Helv. 94 (2019), no. 4, 701–765. MR 4046003, DOI https://doi.org/10.4171/cmh/472
- Gregor Giesen and Peter M. Topping, Ricci flow of negatively curved incomplete surfaces, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 357–367. MR 2647124, DOI https://doi.org/10.1007/s00526-009-0290-x
- Gregor Giesen and Peter M. Topping, Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations 36 (2011), no. 10, 1860–1880. MR 2832165, DOI https://doi.org/10.1080/03605302.2011.558555
- Richard S. Hamilton, Three-orbifolds with positive Ricci curvature, Collected papers on Ricci flow, Ser. Geom. Topol., vol. 37, Int. Press, Somerville, MA, 2003, pp. 521–524. MR 2143256
- Hans-Joachim Hein and Song Sun, Calabi-Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73–130. MR 3735865, DOI https://doi.org/10.1007/s10240-017-0092-1
- Thalia Jeffres, Rafe Mazzeo, and Yanir A. Rubinstein, Kähler-Einstein metrics with edge singularities, Ann. of Math. (2) 183 (2016), no. 1, 95–176. MR 3432582, DOI https://doi.org/10.4007/annals.2016.183.1.3
- Dominic D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. MR 1787733
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Klaus Kirsten, Paul Loya, and Jinsung Park, Functional determinants for general self-adjoint extensions of Laplace-type operators resulting from the generalized cone, Manuscripta Math. 125 (2008), no. 1, 95–126. MR 2357751, DOI https://doi.org/10.1007/s00229-007-0142-y
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76. MR 115189, DOI https://doi.org/10.2307/1969879
- N. Koiso, Einstein metrics and complex structures, Invent. Math. 73 (1983), no. 1, 71–106. MR 707349, DOI https://doi.org/10.1007/BF01393826
- Klaus Kröncke, Stability of Einstein manifolds, Ph.D. thesis, Universität Potsdam, 2013
- Klaus Kröncke, On the stability of Einstein manifolds, Ann. Global Anal. Geom. 47 (2015), no. 1, 81–98. MR 3302177, DOI https://doi.org/10.1007/s10455-014-9436-y
- Klaus Kröncke, Stable and unstable Einstein warped products, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6537–6563. MR 3660232, DOI https://doi.org/10.1090/tran/6959
- Klaus Kröncke, Stability of sin-cones and cosh-cylinders, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 3, 1155–1187. MR 3807599
- Klaus Kröncke and Boris Vertman, Stability of Ricci de Turck flow on singular spaces, Calc. Var. Partial Differential Equations 58 (2019), no. 2, Paper No. 74, 40. MR 3927129, DOI https://doi.org/10.1007/s00526-019-1510-7
- W. Kühnel and H.-B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2841–2848. MR 1260173, DOI https://doi.org/10.1090/S0002-9939-1995-1260173-6
- André Lichnerowicz, Propagateurs et commutateurs en relativité générale, Inst. Hautes Études Sci. Publ. Math. 10 (1961), 56 (French). MR 157736
- Jiawei Liu and Xi Zhang, Conical Kähler-Ricci flows on Fano manifolds, Adv. Math. 307 (2017), 1324–1371. MR 3590543, DOI https://doi.org/10.1016/j.aim.2016.12.002
- Rafe Mazzeo, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equations 16 (1991), no. 10, 1615–1664. MR 1133743, DOI https://doi.org/10.1080/03605309108820815
- Rafe Mazzeo, Yanir A. Rubinstein, and Natasa Sesum, Ricci flow on surfaces with conic singularities, Anal. PDE 8 (2015), no. 4, 839–882. MR 3366005, DOI https://doi.org/10.2140/apde.2015.8.839
- Rafe Mazzeo and Boris Vertman, Analytic torsion on manifolds with edges, Adv. Math. 231 (2012), no. 2, 1000–1040. MR 2955200, DOI https://doi.org/10.1016/j.aim.2012.05.008
- Richard B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993. MR 1348401
- Richard B. Melrose, Calculus of conormal distributions on manifolds with corners, Intl. Math. Research Notices, no. 3 (1992), 51–61
- Edith A. Mooers, Heat kernel asymptotics on manifolds with conic singularities, J. Anal. Math. 78 (1999), 1–36. MR 1714065, DOI https://doi.org/10.1007/BF02791127
- Morio Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. MR 142086, DOI https://doi.org/10.2969/jmsj/01430333
- Tristan Ozuch, Perelman’s functionals on cones: construction of type III Ricci flows coming out of cones, J. Geom. Anal. 30 (2020), no. 1, 1–53. MR 4058503, DOI https://doi.org/10.1007/s12220-018-00131-w
- Tommaso Pacini, Desingularizing isolated conical singularities: uniform estimates via weighted Sobolev spaces, Comm. Anal. Geom. 21 (2013), no. 1, 105–170. MR 3046940, DOI https://doi.org/10.4310/CAG.2013.v21.n1.a3
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint on arXiv:math/0211159 [math.DG] (2002)
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR 1068530
- Felix Schulze and Miles Simon, Expanding solitons with non-negative curvature operator coming out of cones, Math. Z. 275 (2013), no. 1-2, 625–639. MR 3101823, DOI https://doi.org/10.1007/s00209-013-1150-0
- Natasa Sesum, Linear and dynamical stability of Ricci-flat metrics, Duke Math. J. 133 (2006), no. 1, 1–26. MR 2219268, DOI https://doi.org/10.1215/S0012-7094-06-13311-2
- Miles Simon, Local smoothing results for the Ricci flow in dimensions two and three, Geom. Topol. 17 (2013), no. 4, 2263–2287. MR 3109868, DOI https://doi.org/10.2140/gt.2013.17.2263
- Song Sun and Yuanqi Wang, On the Kähler-Ricci flow near a Kähler-Einstein metric, J. Reine Angew. Math. 699 (2015), 143–158. MR 3305923, DOI https://doi.org/10.1515/crelle-2013-0004
- Gang Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646. MR 915841
- Gang Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. MR 3352459, DOI https://doi.org/10.1002/cpa.21578
- Boris Vertman, Ricci flow on singular manifolds, to appear in: J. Geom Anal.
- Boris Vertman, Zeta determinants for regular-singular Laplace-type operators, J. Math. Phys. 50 (2009), no. 8, 083515
- Yuanqi Wang, Smooth approximations of the conical Kähler-Ricci flows, Math. Ann. 365 (2016), no. 1-2, 835–856. MR 3498928, DOI https://doi.org/10.1007/s00208-015-1263-3
- Hao Yin, Ricci flow on surfaces with conical singularities, J. Geom. Anal. 20 (2010), no. 4, 970–995. MR 2683772, DOI https://doi.org/10.1007/s12220-010-9136-1
- Meng Zhu, The second variation of the Ricci expander entropy, Pacific J. Math. 251 (2011), no. 2, 499–510. MR 2811045, DOI https://doi.org/10.2140/pjm.2011.251.499
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 53E20, 53C25, 58C05
Retrieve articles in all journals with MSC (2020): 53E20, 53C25, 58C05
Additional Information
Klaus Kröncke
Affiliation:
Department of Mathematics, University Hamburg, Germany
MR Author ID:
1093667
ORCID:
0000-0001-7933-0034
Email:
klaus.kroencke@uni-hamburg.de
Boris Vertman
Affiliation:
Department of Mathematics, Universität Oldenburg, Germany
MR Author ID:
871560
Email:
boris.vertman@uni-oldenburg.de
Keywords:
Perelman’s entropy,
Ricci flow,
Ricci solitons,
singular spaces
Received by editor(s):
April 3, 2019
Received by editor(s) in revised form:
August 16, 2020
Published electronically:
January 21, 2021
Additional Notes:
The authors were partially supported by DFG Priority Programme “Geometry at Infinity”. The authors thank the Priority programme “Geometry at Infinity” of the German Research Foundation for financial and intellectual support.
Article copyright:
© Copyright 2021
American Mathematical Society