Perelman’s entropies for manifolds with conical singularities
HTML articles powered by AMS MathViewer
- by Klaus Kröncke and Boris Vertman PDF
- Trans. Amer. Math. Soc. 374 (2021), 2873-2908 Request permission
Abstract:
In this paper we discuss Perelman’s $\lambda$-functional, Perelman’s Ricci shrinker entropy as well as the Ricci expander entropy on a class of manifolds with isolated conical singularities. On such manifolds, a singular Ricci de Turck flow preserving the isolated conical singularities exists by our previous work. We prove that the entropies are monotone along the singular Ricci de Turck flow. We employ these entropies to show that in the singular setting, Ricci solitons are gradient and that steady or expanding Ricci solitons are Einstein.References
- Pierre Albin and Jesse Gell-Redman, The index formula for families of dirac type operators on pseudomanifolds, arXiv:1712.08513[math.DG] 2017.
- Ben Andrews and Christopher Hopper, The Ricci flow in Riemannian geometry, Lecture Notes in Mathematics, vol. 2011, Springer, Heidelberg, 2011. A complete proof of the differentiable 1/4-pinching sphere theorem. MR 2760593, DOI 10.1007/978-3-642-16286-2
- Eric Bahuaud and Boris Vertman, Yamabe flow on manifolds with edges, Math. Nachr. 287 (2014), no. 2-3, 127–159. MR 3163570, DOI 10.1002/mana.201200210
- Eric Bahuaud and Boris Vertman, Long-time existence of the edge Yamabe flow, J. Math. Soc. Japan 71 (2019), no. 2, 651–688. MR 3943455, DOI 10.2969/jmsj/78147814
- Werner Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2006. MR 2243012, DOI 10.4171/025
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- Arthur L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. MR 2371700
- J. Brüning and M. Lesch, Kähler-Hodge theory for conformal complex cones, Geom. Funct. Anal. 3 (1993), no. 5, 439–473. MR 1233862, DOI 10.1007/BF01896238
- Huai-Dong Cao, Richard S. Hamilton, and Tom Ilmanen, Gaussian densities and stability for some Ricci solitons, preprint on arXiv:math/0404165 [math.DG] 2004
- Huai-Dong Cao and Chenxu He, Linear stability of Perelman’s $\nu$-entropy on symmetric spaces of compact type, J. Reine Angew. Math. 709 (2015), 229–246. MR 3430881, DOI 10.1515/crelle-2013-0096
- Huai-Dong Cao and Meng Zhu, On second variation of Perelman’s Ricci shrinker entropy, Math. Ann. 353 (2012), no. 3, 747–763. MR 2923948, DOI 10.1007/s00208-011-0701-0
- Xiuxiong Chen and Yuanqi Wang, Bessel functions, heat kernel and the conical Kähler-Ricci flow, J. Funct. Anal. 269 (2015), no. 2, 551–632. MR 3348827, DOI 10.1016/j.jfa.2015.01.015
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI, 2007. Geometric aspects. MR 2302600, DOI 10.1090/surv/135
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, Mathematical Surveys and Monographs, vol. 163, American Mathematical Society, Providence, RI, 2010. MR 2604955, DOI 10.1090/surv/163
- Xianzhe Dai and Changliang Wang, Perelman’s W-functional on manifolds with conical singularities, to appear in: Math. Res. Lett.
- Xianzhe Dai and Changliang Wang, Perelman’s $\lambda$-functional on manifolds with conical singularities, J. Geom. Anal. 28 (2018), no. 4, 3657–3689. MR 3881984, DOI 10.1007/s12220-017-9971-4
- Alix Deruelle, Smoothing out positively curved metric cones by Ricci expanders, Geom. Funct. Anal. 26 (2016), no. 1, 188–249. MR 3494489, DOI 10.1007/s00039-016-0360-0
- Alix Deruelle and Klaus Kröncke, Stability of ALE Ricci flat manifolds under Ricci flow, to appear in: J. Geom. Anal.
- S. K. Donaldson, Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 49–79. MR 2975584, DOI 10.1007/978-3-642-28821-0_{4}
- Michael Feldman, Tom Ilmanen, and Lei Ni, Entropy and reduced distance for Ricci expanders, J. Geom. Anal. 15 (2005), no. 1, 49–62. MR 2132265, DOI 10.1007/BF02921858
- S. Gallot, Équations différentielles caractéristiques de la sphère, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 235–267 (French). MR 543217
- Jesse Gell-Redman and Jan Swoboda, Spectral and Hodge theory of “Witt” incomplete cusp edge spaces, Comment. Math. Helv. 94 (2019), no. 4, 701–765. MR 4046003, DOI 10.4171/cmh/472
- Gregor Giesen and Peter M. Topping, Ricci flow of negatively curved incomplete surfaces, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 357–367. MR 2647124, DOI 10.1007/s00526-009-0290-x
- Gregor Giesen and Peter M. Topping, Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations 36 (2011), no. 10, 1860–1880. MR 2832165, DOI 10.1080/03605302.2011.558555
- Richard S. Hamilton, Three-orbifolds with positive Ricci curvature, Collected papers on Ricci flow, Ser. Geom. Topol., vol. 37, Int. Press, Somerville, MA, 2003, pp. 521–524. MR 2143256
- Hans-Joachim Hein and Song Sun, Calabi-Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73–130. MR 3735865, DOI 10.1007/s10240-017-0092-1
- Thalia Jeffres, Rafe Mazzeo, and Yanir A. Rubinstein, Kähler-Einstein metrics with edge singularities, Ann. of Math. (2) 183 (2016), no. 1, 95–176. MR 3432582, DOI 10.4007/annals.2016.183.1.3
- Dominic D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. MR 1787733
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Klaus Kirsten, Paul Loya, and Jinsung Park, Functional determinants for general self-adjoint extensions of Laplace-type operators resulting from the generalized cone, Manuscripta Math. 125 (2008), no. 1, 95–126. MR 2357751, DOI 10.1007/s00229-007-0142-y
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76. MR 115189, DOI 10.2307/1969879
- N. Koiso, Einstein metrics and complex structures, Invent. Math. 73 (1983), no. 1, 71–106. MR 707349, DOI 10.1007/BF01393826
- Klaus Kröncke, Stability of Einstein manifolds, Ph.D. thesis, Universität Potsdam, 2013
- Klaus Kröncke, On the stability of Einstein manifolds, Ann. Global Anal. Geom. 47 (2015), no. 1, 81–98. MR 3302177, DOI 10.1007/s10455-014-9436-y
- Klaus Kröncke, Stable and unstable Einstein warped products, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6537–6563. MR 3660232, DOI 10.1090/tran/6959
- Klaus Kröncke, Stability of sin-cones and cosh-cylinders, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 3, 1155–1187. MR 3807599
- Klaus Kröncke and Boris Vertman, Stability of Ricci de Turck flow on singular spaces, Calc. Var. Partial Differential Equations 58 (2019), no. 2, Paper No. 74, 40. MR 3927129, DOI 10.1007/s00526-019-1510-7
- W. Kühnel and H.-B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2841–2848. MR 1260173, DOI 10.1090/S0002-9939-1995-1260173-6
- André Lichnerowicz, Propagateurs et commutateurs en relativité générale, Inst. Hautes Études Sci. Publ. Math. 10 (1961), 56 (French). MR 157736
- Jiawei Liu and Xi Zhang, Conical Kähler-Ricci flows on Fano manifolds, Adv. Math. 307 (2017), 1324–1371. MR 3590543, DOI 10.1016/j.aim.2016.12.002
- Rafe Mazzeo, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equations 16 (1991), no. 10, 1615–1664. MR 1133743, DOI 10.1080/03605309108820815
- Rafe Mazzeo, Yanir A. Rubinstein, and Natasa Sesum, Ricci flow on surfaces with conic singularities, Anal. PDE 8 (2015), no. 4, 839–882. MR 3366005, DOI 10.2140/apde.2015.8.839
- Rafe Mazzeo and Boris Vertman, Analytic torsion on manifolds with edges, Adv. Math. 231 (2012), no. 2, 1000–1040. MR 2955200, DOI 10.1016/j.aim.2012.05.008
- Richard B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993. MR 1348401, DOI 10.1016/0377-0257(93)80040-i
- Richard B. Melrose, Calculus of conormal distributions on manifolds with corners, Intl. Math. Research Notices, no. 3 (1992), 51–61
- Edith A. Mooers, Heat kernel asymptotics on manifolds with conic singularities, J. Anal. Math. 78 (1999), 1–36. MR 1714065, DOI 10.1007/BF02791127
- Morio Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. MR 142086, DOI 10.2969/jmsj/01430333
- Tristan Ozuch, Perelman’s functionals on cones: construction of type III Ricci flows coming out of cones, J. Geom. Anal. 30 (2020), no. 1, 1–53. MR 4058503, DOI 10.1007/s12220-018-00131-w
- Tommaso Pacini, Desingularizing isolated conical singularities: uniform estimates via weighted Sobolev spaces, Comm. Anal. Geom. 21 (2013), no. 1, 105–170. MR 3046940, DOI 10.4310/CAG.2013.v21.n1.a3
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint on arXiv:math/0211159 [math.DG] (2002)
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR 1068530
- Felix Schulze and Miles Simon, Expanding solitons with non-negative curvature operator coming out of cones, Math. Z. 275 (2013), no. 1-2, 625–639. MR 3101823, DOI 10.1007/s00209-013-1150-0
- Natasa Sesum, Linear and dynamical stability of Ricci-flat metrics, Duke Math. J. 133 (2006), no. 1, 1–26. MR 2219268, DOI 10.1215/S0012-7094-06-13311-2
- Miles Simon, Local smoothing results for the Ricci flow in dimensions two and three, Geom. Topol. 17 (2013), no. 4, 2263–2287. MR 3109868, DOI 10.2140/gt.2013.17.2263
- Song Sun and Yuanqi Wang, On the Kähler-Ricci flow near a Kähler-Einstein metric, J. Reine Angew. Math. 699 (2015), 143–158. MR 3305923, DOI 10.1515/crelle-2013-0004
- Gang Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646. MR 915841
- Gang Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. MR 3352459, DOI 10.1002/cpa.21578
- Boris Vertman, Ricci flow on singular manifolds, to appear in: J. Geom Anal.
- Boris Vertman, Zeta determinants for regular-singular Laplace-type operators, J. Math. Phys. 50 (2009), no. 8, 083515
- Yuanqi Wang, Smooth approximations of the conical Kähler-Ricci flows, Math. Ann. 365 (2016), no. 1-2, 835–856. MR 3498928, DOI 10.1007/s00208-015-1263-3
- Hao Yin, Ricci flow on surfaces with conical singularities, J. Geom. Anal. 20 (2010), no. 4, 970–995. MR 2683772, DOI 10.1007/s12220-010-9136-1
- Meng Zhu, The second variation of the Ricci expander entropy, Pacific J. Math. 251 (2011), no. 2, 499–510. MR 2811045, DOI 10.2140/pjm.2011.251.499
Additional Information
- Klaus Kröncke
- Affiliation: Department of Mathematics, University Hamburg, Germany
- MR Author ID: 1093667
- ORCID: 0000-0001-7933-0034
- Email: klaus.kroencke@uni-hamburg.de
- Boris Vertman
- Affiliation: Department of Mathematics, Universität Oldenburg, Germany
- MR Author ID: 871560
- Email: boris.vertman@uni-oldenburg.de
- Received by editor(s): April 3, 2019
- Received by editor(s) in revised form: August 16, 2020
- Published electronically: January 21, 2021
- Additional Notes: The authors were partially supported by DFG Priority Programme “Geometry at Infinity”. The authors thank the Priority programme “Geometry at Infinity” of the German Research Foundation for financial and intellectual support.
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2873-2908
- MSC (2020): Primary 53E20; Secondary 53C25, 58C05
- DOI: https://doi.org/10.1090/tran/8295
- MathSciNet review: 4223036