Non–uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data
HTML articles powered by AMS MathViewer
- by Elisabetta Chiodaroli, Ondřej Kreml, Václav Mácha and Sebastian Schwarzacher PDF
- Trans. Amer. Math. Soc. 374 (2021), 2269-2295 Request permission
Abstract:
We consider the isentropic Euler equations of gas dynamics in the whole two-dimensional space and we prove the existence of a $C^\infty$ initial datum which admits infinitely many bounded admissible weak solutions. Taking advantage of the relation between smooth solutions to the Euler system and to the Burgers equation we construct a smooth compression wave which collapses into a perturbed Riemann state at some time instant $T > 0$. In order to continue the solution after the formation of the discontinuity, we adjust and apply the theory developed by De Lellis and Székelyhidi [Ann. of Math. (2) 170 (2009), no. 3, pp. 1417–1436; Arch. Ration. Mech. Anal. 195 (2010), no. 1, pp. 225–260] and we construct infinitely many solutions. We introduce the notion of an admissible generalized fan subsolution to be able to handle data which are not piecewise constant and we reduce the argument to finding a single generalized subsolution.References
- Tristan Buckmaster, Onsager’s conjecture almost everywhere in time, Comm. Math. Phys. 333 (2015), no. 3, 1175–1198. MR 3302631, DOI 10.1007/s00220-014-2262-z
- Tristan Buckmaster, Camillo De Lellis, Philip Isett, and László Székelyhidi Jr., Anomalous dissipation for $1/5$-Hölder Euler flows, Ann. of Math. (2) 182 (2015), no. 1, 127–172. MR 3374958, DOI 10.4007/annals.2015.182.1.3
- Tristan Buckmaster, Camillo De Lellis, and László Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math. 69 (2016), no. 9, 1613–1670. MR 3530360, DOI 10.1002/cpa.21586
- Tristan Buckmaster, Camillo de Lellis, László Székelyhidi Jr., and Vlad Vicol, Onsager’s conjecture for admissible weak solutions, Comm. Pure Appl. Math. 72 (2019), no. 2, 229–274. MR 3896021, DOI 10.1002/cpa.21781
- Elisabetta Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ. 11 (2014), no. 3, 493–519. MR 3261301, DOI 10.1142/S0219891614500143
- Elisabetta Chiodaroli, Camillo De Lellis, and Ondřej Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1157–1190. MR 3352460, DOI 10.1002/cpa.21537
- Elisabetta Chiodaroli and Laurent Gosse, A numerical glimpse at some non-standard solutions to compressible Euler equations, Innovative algorithms and analysis, Springer INdAM Ser., vol. 16, Springer, Cham, 2017, pp. 111–140. MR 3643878
- Elisabetta Chiodaroli and Ondrej Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal. 214 (2014), no. 3, 1019–1049. MR 3269641, DOI 10.1007/s00205-014-0771-8
- Peter Constantin, Weinan E, and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994), no. 1, 207–209. MR 1298949
- Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2010. MR 2574377, DOI 10.1007/978-3-642-04048-1
- Sara Daneri and László Székelyhidi Jr., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 224 (2017), no. 2, 471–514. MR 3614753, DOI 10.1007/s00205-017-1081-8
- Camillo De Lellis and László Székelyhidi Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009), no. 3, 1417–1436. MR 2600877, DOI 10.4007/annals.2009.170.1417
- Camillo De Lellis and László Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 225–260. MR 2564474, DOI 10.1007/s00205-008-0201-x
- Camillo De Lellis and László Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math. 193 (2013), no. 2, 377–407. MR 3090182, DOI 10.1007/s00222-012-0429-9
- Gregory L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78 (1994), no. 3-4, 222–240. MR 1302409, DOI 10.1016/0167-2789(94)90117-1
- Eduard Feireisl, Maximal dissipation and well-posedness for the compressible Euler system, J. Math. Fluid Mech. 16 (2014), no. 3, 447–461. MR 3247361, DOI 10.1007/s00021-014-0163-8
- Eduard Feireisl, Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, and Emil Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1375–1395. MR 3594358, DOI 10.1007/s00205-016-1060-5
- Philip Isett, A proof of Onsager’s conjecture, Ann. of Math. (2) 188 (2018), no. 3, 871–963. MR 3866888, DOI 10.4007/annals.2018.188.3.4
- P. Isett, Nonuniqueness and existence of continuous, globally dissipative Euler flows, arXiv:1710.11186, October 2017.
- László Székelyhidi, Weak solutions to the incompressible Euler equations with vortex sheet initial data, C. R. Math. Acad. Sci. Paris 349 (2011), no. 19-20, 1063–1066 (English, with English and French summaries). MR 2842999, DOI 10.1016/j.crma.2011.09.009
Additional Information
- Elisabetta Chiodaroli
- Affiliation: Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 1/c, 56127 Pisa, Italy
- MR Author ID: 935797
- Email: elisabetta.chiodaroli@unipi.it
- Ondřej Kreml
- Affiliation: Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
- Email: kreml@math.cas.cz
- Václav Mácha
- Affiliation: Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
- Email: macha@math.cas.cz
- Sebastian Schwarzacher
- Affiliation: Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic
- Email: schwarz@math.cas.cz
- Received by editor(s): April 9, 2019
- Published electronically: February 2, 2021
- Additional Notes: The first author was supported by the Italian National Grant FFABR 2017.
The second, third, and fourth authors were supported by the GAČR (Czech Science Foundation) project GJ17-01694Y in the general framework of RVO: 67985840. - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2269-2295
- MSC (2020): Primary 35L65, 76N10, 35Q31
- DOI: https://doi.org/10.1090/tran/8129
- MathSciNet review: 4223016