Coarse geometry and Callias quantisation
Authors:
Hao Guo, Peter Hochs and Varghese Mathai
Journal:
Trans. Amer. Math. Soc. 374 (2021), 2479-2520
MSC (2020):
Primary 19K56; Secondary 46L08, 53D50, 46L80
DOI:
https://doi.org/10.1090/tran/8202
Published electronically:
January 26, 2021
MathSciNet review:
4223023
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Consider a proper, isometric action by a unimodular, locally compact group $G$ on a complete Riemannian manifold $M$. For equivariant elliptic operators that are invertible outside a cocompact subset of $M$, we show that a localised index in the $K$-theory of the maximal group $C^*$-algebra of $G$ is well-defined. The approach is based on the use of maximal versions of equivariant localised Roe algebras, and many of the technical arguments in this paper are used to handle the ways in which they differ from their reduced versions.
By using the maximal group $C^*$-algebra instead of its reduced counterpart, we can apply the trace given by integration over $G$ to recover an index defined earlier by the last two authors, and developed further by Braverman, in terms of sections invariant under the group action. This leads to refinements of index-theoretic obstructions to Riemannian metrics of positive scalar curvature on noncompact manifolds, and also on orbifolds and other singular quotients of proper group actions. As a motivating application in another direction, we prove a version of Guillemin and Sternberg’s quantisation commutes with reduction principle for equivariant indices of $\mathrm {Spin}^{c}$ Callias-type operators.
- Herbert Abels, Parallelizability of proper actions, global $K$-slices and maximal compact subgroups, Math. Ann. 212 (1974/75), 1–19. MR 375264, DOI https://doi.org/10.1007/BF01343976
- Nicolae Anghel, An abstract index theorem on noncompact Riemannian manifolds, Houston J. Math. 19 (1993), no. 2, 223–237. MR 1225459
- N. Anghel, On the index of Callias-type operators, Geom. Funct. Anal. 3 (1993), no. 5, 431–438. MR 1233861, DOI https://doi.org/10.1007/BF01896237
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Soc. Math. France, Paris, 1976, pp. 43–72. Astérisque, No. 32-33. MR 0420729
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI https://doi.org/10.1017/S0305004100049410
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast $-algebras, $C^\ast $-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, DOI https://doi.org/10.1090/conm/167/1292018
- N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1306, Hermann, Paris, 1963 (French). MR 0179291
- Maxim Braverman, Index theorem for equivariant Dirac operators on noncompact manifolds, $K$-Theory 27 (2002), no. 1, 61–101. MR 1936585, DOI https://doi.org/10.1023/A%3A1020842205711
- Maxim Braverman, The index theory on non-compact manifolds with proper group action, J. Geom. Phys. 98 (2015), 275–284. MR 3414957, DOI https://doi.org/10.1016/j.geomphys.2015.08.014
- Maxim Braverman and Simone Cecchini, Callias-type operators in von Neumann algebras, J. Geom. Anal. 28 (2018), no. 1, 546–586. MR 3745871, DOI https://doi.org/10.1007/s12220-017-9832-1
- Ulrich Bunke, A $K$-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995), no. 2, 241–279. MR 1348799, DOI https://doi.org/10.1007/BF01460989
- Constantine Callias, Axial anomalies and index theorems on open spaces, Comm. Math. Phys. 62 (1978), no. 3, 213–234. MR 507780
- Simone Cecchini, Callias-type operators in $C^*$-algebras and positive scalar curvature on noncompact manifolds, J. Topol. Anal. 12 (2020), no. 4, 897–939. MR 4146567, DOI https://doi.org/10.1142/S1793525319500687
- Xiaoman Chen, Jinming Wang, Zhizhang Xie, and Guoliang Yu, Delocalized eta invariants, cyclic cohomology and higher rho-invariants, arXiv:1901.02378, 2019.
- Johannes Ebert, Elliptic regularity for Dirac operators on families of noncompact manifolds, arXiv:1905.12299, 2019.
- Guihua Gong, Qin Wang, and Guoliang Yu, Geometrization of the strong Novikov conjecture for residually finite groups, J. Reine Angew. Math. 621 (2008), 159–189. MR 2431253, DOI https://doi.org/10.1515/CRELLE.2008.061
- Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR 720933
- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI https://doi.org/10.1007/BF01398934
- Hao Guo, Index of equivariant Callias-type operators and invariant metrics of positive scalar curvature, arXiv:1803.05558, 2018.
- Hao Guo, Peter Hochs, and Varghese Mathai, Equivariant Callias index theory via coarse geometry, arXiv:1902.07391, 2019.
- Hao Guo, Zhizhang Xie, and Guoliang Yu, A Lichnerowicz vanishing theorem for the maximal Roe algebra, arXiv:1905.12299, 2019.
- Uffe Haagerup and Agata Przybyszewska, Proper metrics on locally compact groups, and proper affine isometric actions on Banach spaces, arXiv:math/0606794, 2006.
- Bernhard Hanke, Daniel Pape, and Thomas Schick, Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 6, 2681–2710 (English, with English and French summaries). MR 3449594
- Nigel Higson and John Roe, Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. MR 1817560
- Peter Hochs and Varghese Mathai, Geometric quantization and families of inner products, Adv. Math. 282 (2015), 362–426. MR 3374530, DOI https://doi.org/10.1016/j.aim.2015.07.004
- Peter Hochs and Varghese Mathai, Quantising proper actions on Spin$^c$-manifolds, Asian J. Math. 21 (2017), no. 4, 631–685. MR 3691850, DOI https://doi.org/10.4310/AJM.2017.v21.n4.a2
- Peter Hochs and Yanli Song, An equivariant index for proper actions III: The invariant and discrete series indices, Differential Geom. Appl. 49 (2016), 1–22. MR 3573821, DOI https://doi.org/10.1016/j.difgeo.2016.07.003
- Peter Hochs and Yanli Song, An equivariant index for proper actions I, J. Funct. Anal. 272 (2017), no. 2, 661–704. MR 3571905, DOI https://doi.org/10.1016/j.jfa.2016.08.024
- Peter Hochs and Yanli Song, An equivariant index for proper actions II: properties and applications, J. Noncommut. Geom. 12 (2018), no. 1, 157–193. MR 3782056, DOI https://doi.org/10.4171/JNCG/273
- Peter Hochs and Hang Wang, An equivariant orbifold index for proper actions, J. Geom. Phys. 154 (2020), 103710, 11. MR 4099480, DOI https://doi.org/10.1016/j.geomphys.2020.103710
- Jens Kaad and Matthias Lesch, A local global principle for regular operators in Hilbert $C^*$-modules, J. Funct. Anal. 262 (2012), no. 10, 4540–4569. MR 2900477, DOI https://doi.org/10.1016/j.jfa.2012.03.002
- Dan Kucerovsky, A short proof of an index theorem, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3729–3736. MR 1860509, DOI https://doi.org/10.1090/S0002-9939-01-06164-0
- Dan Kucerovsky, Functional calculus and representations of $C_0(\Bbb C)$ on a Hilbert module, Q. J. Math. 53 (2002), no. 4, 467–477. MR 1949157, DOI https://doi.org/10.1093/qjmath/53.4.467
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Yiannis Loizides, Quasi-polynomials and the singular $[Q,R]=0$ theorem, SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), Paper No. 090, 15. MR 4032363, DOI https://doi.org/10.3842/SIGMA.2019.090
- Varghese Mathai and Weiping Zhang, Geometric quantization for proper actions, Adv. Math. 225 (2010), no. 3, 1224–1247. With an appendix by Ulrich Bunke. MR 2673729, DOI https://doi.org/10.1016/j.aim.2010.03.023
- Eckhard Meinrenken, Symplectic surgery and the ${\rm Spin}^c$-Dirac operator, Adv. Math. 134 (1998), no. 2, 240–277. MR 1617809, DOI https://doi.org/10.1006/aima.1997.1701
- Eckhard Meinrenken and Reyer Sjamaar, Singular reduction and quantization, Topology 38 (1999), no. 4, 699–762. MR 1679797, DOI https://doi.org/10.1016/S0040-9383%2898%2900012-3
- Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323. MR 126506, DOI https://doi.org/10.2307/1970335
- Paul-Emile Paradan, Localization of the Riemann-Roch character, J. Funct. Anal. 187 (2001), no. 2, 442–509. MR 1875155, DOI https://doi.org/10.1006/jfan.2001.3825
- Paul-Emile Paradan and Michèle Vergne, Equivariant Dirac operators and differentiable geometric invariant theory, Acta Math. 218 (2017), no. 1, 137–199. MR 3710795, DOI https://doi.org/10.4310/ACTA.2017.v218.n1.a3
- John Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90. MR 1147350, DOI https://doi.org/10.1090/memo/0497
- John Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. MR 1399087
- John Roe, Positive curvature, partial vanishing theorems and coarse indices, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 1, 223–233. MR 3439130, DOI https://doi.org/10.1017/S0013091514000236
- Thomas Schick, The topology of positive scalar curvature, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1285–1307. MR 3728662
- Youliang Tian and Weiping Zhang, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), no. 2, 229–259. MR 1621428, DOI https://doi.org/10.1007/s002220050223
- Ján Špakula and Rufus Willett, Maximal and reduced Roe algebras of coarsely embeddable spaces, J. Reine Angew. Math. 678 (2013), 35–68. MR 3056102, DOI https://doi.org/10.1515/crelle.2012.019
- Zhizhang Xie and Guoliang Yu, Delocalized eta invariants, algebraicity, and $K$-theory of group $C^*$-algebras, arXiv:1805.07617, 2018.
- Guoliang Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (1998), no. 2, 325–355. MR 1626745, DOI https://doi.org/10.2307/121011
- Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201–240. MR 1728880, DOI https://doi.org/10.1007/s002229900032
- Guoliang Yu, A characterization of the image of the Baum-Connes map, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 649–657. MR 2732068
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 19K56, 46L08, 53D50, 46L80
Retrieve articles in all journals with MSC (2020): 19K56, 46L08, 53D50, 46L80
Additional Information
Hao Guo
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77840
ORCID:
0000-0001-5668-6409
Email:
haoguo@math.tamu.edu
Peter Hochs
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia; and Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
MR Author ID:
786204
ORCID:
0000-0001-9232-2936
Email:
p.hochs@math.ru.nl
Varghese Mathai
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
MR Author ID:
231404
Email:
mathai.varghese@adelaide.edu.au
Received by editor(s):
October 8, 2019
Received by editor(s) in revised form:
December 20, 2019, and April 14, 2020
Published electronically:
January 26, 2021
Additional Notes:
The first author was supported in part by funding from the National Science Foundation under grant no. 1564398.
The third author was supported by funding from the Australian Research Council, through the Australian Laureate Fellowship FL170100020.
Article copyright:
© Copyright 2021
American Mathematical Society