Coarse geometry and Callias quantisation
HTML articles powered by AMS MathViewer
- by Hao Guo, Peter Hochs and Varghese Mathai PDF
- Trans. Amer. Math. Soc. 374 (2021), 2479-2520 Request permission
Abstract:
Consider a proper, isometric action by a unimodular, locally compact group $G$ on a complete Riemannian manifold $M$. For equivariant elliptic operators that are invertible outside a cocompact subset of $M$, we show that a localised index in the $K$-theory of the maximal group $C^*$-algebra of $G$ is well-defined. The approach is based on the use of maximal versions of equivariant localised Roe algebras, and many of the technical arguments in this paper are used to handle the ways in which they differ from their reduced versions.
By using the maximal group $C^*$-algebra instead of its reduced counterpart, we can apply the trace given by integration over $G$ to recover an index defined earlier by the last two authors, and developed further by Braverman, in terms of sections invariant under the group action. This leads to refinements of index-theoretic obstructions to Riemannian metrics of positive scalar curvature on noncompact manifolds, and also on orbifolds and other singular quotients of proper group actions. As a motivating application in another direction, we prove a version of Guillemin and Sternberg’s quantisation commutes with reduction principle for equivariant indices of $\mathrm {Spin}^{c}$ Callias-type operators.
References
- Herbert Abels, Parallelizability of proper actions, global $K$-slices and maximal compact subgroups, Math. Ann. 212 (1974/75), 1–19. MR 375264, DOI 10.1007/BF01343976
- Nicolae Anghel, An abstract index theorem on noncompact Riemannian manifolds, Houston J. Math. 19 (1993), no. 2, 223–237. MR 1225459
- N. Anghel, On the index of Callias-type operators, Geom. Funct. Anal. 3 (1993), no. 5, 431–438. MR 1233861, DOI 10.1007/BF01896237
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Astérisque, No. 32-33, Soc. Math. France, Paris, 1976, pp. 43–72. MR 0420729
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, DOI 10.1090/conm/167/1292018
- N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1306, Hermann, Paris, 1963 (French). MR 0179291
- Maxim Braverman, Index theorem for equivariant Dirac operators on noncompact manifolds, $K$-Theory 27 (2002), no. 1, 61–101. MR 1936585, DOI 10.1023/A:1020842205711
- Maxim Braverman, The index theory on non-compact manifolds with proper group action, J. Geom. Phys. 98 (2015), 275–284. MR 3414957, DOI 10.1016/j.geomphys.2015.08.014
- Maxim Braverman and Simone Cecchini, Callias-type operators in von Neumann algebras, J. Geom. Anal. 28 (2018), no. 1, 546–586. MR 3745871, DOI 10.1007/s12220-017-9832-1
- Ulrich Bunke, A $K$-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995), no. 2, 241–279. MR 1348799, DOI 10.1007/BF01460989
- Constantine Callias, Axial anomalies and index theorems on open spaces, Comm. Math. Phys. 62 (1978), no. 3, 213–234. MR 507780
- Simone Cecchini, Callias-type operators in $C^*$-algebras and positive scalar curvature on noncompact manifolds, J. Topol. Anal. 12 (2020), no. 4, 897–939. MR 4146567, DOI 10.1142/S1793525319500687
- Xiaoman Chen, Jinming Wang, Zhizhang Xie, and Guoliang Yu, Delocalized eta invariants, cyclic cohomology and higher rho-invariants, arXiv:1901.02378, 2019.
- Johannes Ebert, Elliptic regularity for Dirac operators on families of noncompact manifolds, arXiv:1905.12299, 2019.
- Guihua Gong, Qin Wang, and Guoliang Yu, Geometrization of the strong Novikov conjecture for residually finite groups, J. Reine Angew. Math. 621 (2008), 159–189. MR 2431253, DOI 10.1515/CRELLE.2008.061
- Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR 720933
- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI 10.1007/BF01398934
- Hao Guo, Index of equivariant Callias-type operators and invariant metrics of positive scalar curvature, arXiv:1803.05558, 2018.
- Hao Guo, Peter Hochs, and Varghese Mathai, Equivariant Callias index theory via coarse geometry, arXiv:1902.07391, 2019.
- Hao Guo, Zhizhang Xie, and Guoliang Yu, A Lichnerowicz vanishing theorem for the maximal Roe algebra, arXiv:1905.12299, 2019.
- Uffe Haagerup and Agata Przybyszewska, Proper metrics on locally compact groups, and proper affine isometric actions on Banach spaces, arXiv:math/0606794, 2006.
- Bernhard Hanke, Daniel Pape, and Thomas Schick, Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 6, 2681–2710 (English, with English and French summaries). MR 3449594
- Nigel Higson and John Roe, Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. MR 1817560
- Peter Hochs and Varghese Mathai, Geometric quantization and families of inner products, Adv. Math. 282 (2015), 362–426. MR 3374530, DOI 10.1016/j.aim.2015.07.004
- Peter Hochs and Varghese Mathai, Quantising proper actions on Spin$^c$-manifolds, Asian J. Math. 21 (2017), no. 4, 631–685. MR 3691850, DOI 10.4310/AJM.2017.v21.n4.a2
- Peter Hochs and Yanli Song, An equivariant index for proper actions III: The invariant and discrete series indices, Differential Geom. Appl. 49 (2016), 1–22. MR 3573821, DOI 10.1016/j.difgeo.2016.07.003
- Peter Hochs and Yanli Song, An equivariant index for proper actions I, J. Funct. Anal. 272 (2017), no. 2, 661–704. MR 3571905, DOI 10.1016/j.jfa.2016.08.024
- Peter Hochs and Yanli Song, An equivariant index for proper actions II: properties and applications, J. Noncommut. Geom. 12 (2018), no. 1, 157–193. MR 3782056, DOI 10.4171/JNCG/273
- Peter Hochs and Hang Wang, An equivariant orbifold index for proper actions, J. Geom. Phys. 154 (2020), 103710, 11. MR 4099480, DOI 10.1016/j.geomphys.2020.103710
- Jens Kaad and Matthias Lesch, A local global principle for regular operators in Hilbert $C^*$-modules, J. Funct. Anal. 262 (2012), no. 10, 4540–4569. MR 2900477, DOI 10.1016/j.jfa.2012.03.002
- Dan Kucerovsky, A short proof of an index theorem, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3729–3736. MR 1860509, DOI 10.1090/S0002-9939-01-06164-0
- Dan Kucerovsky, Functional calculus and representations of $C_0(\Bbb C)$ on a Hilbert module, Q. J. Math. 53 (2002), no. 4, 467–477. MR 1949157, DOI 10.1093/qjmath/53.4.467
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Yiannis Loizides, Quasi-polynomials and the singular $[Q,R]=0$ theorem, SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), Paper No. 090, 15. MR 4032363, DOI 10.3842/SIGMA.2019.090
- Varghese Mathai and Weiping Zhang, Geometric quantization for proper actions, Adv. Math. 225 (2010), no. 3, 1224–1247. With an appendix by Ulrich Bunke. MR 2673729, DOI 10.1016/j.aim.2010.03.023
- Eckhard Meinrenken, Symplectic surgery and the $\textrm {Spin}^c$-Dirac operator, Adv. Math. 134 (1998), no. 2, 240–277. MR 1617809, DOI 10.1006/aima.1997.1701
- Eckhard Meinrenken and Reyer Sjamaar, Singular reduction and quantization, Topology 38 (1999), no. 4, 699–762. MR 1679797, DOI 10.1016/S0040-9383(98)00012-3
- Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323. MR 126506, DOI 10.2307/1970335
- Paul-Emile Paradan, Localization of the Riemann-Roch character, J. Funct. Anal. 187 (2001), no. 2, 442–509. MR 1875155, DOI 10.1006/jfan.2001.3825
- Paul-Emile Paradan and Michèle Vergne, Equivariant Dirac operators and differentiable geometric invariant theory, Acta Math. 218 (2017), no. 1, 137–199. MR 3710795, DOI 10.4310/ACTA.2017.v218.n1.a3
- John Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90. MR 1147350, DOI 10.1090/memo/0497
- John Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. MR 1399087, DOI 10.1090/cbms/090
- John Roe, Positive curvature, partial vanishing theorems and coarse indices, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 1, 223–233. MR 3439130, DOI 10.1017/S0013091514000236
- Thomas Schick, The topology of positive scalar curvature, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1285–1307. MR 3728662
- Youliang Tian and Weiping Zhang, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), no. 2, 229–259. MR 1621428, DOI 10.1007/s002220050223
- Ján Špakula and Rufus Willett, Maximal and reduced Roe algebras of coarsely embeddable spaces, J. Reine Angew. Math. 678 (2013), 35–68. MR 3056102, DOI 10.1515/crelle.2012.019
- Zhizhang Xie and Guoliang Yu, Delocalized eta invariants, algebraicity, and $K$-theory of group $C^*$-algebras, arXiv:1805.07617, 2018.
- Guoliang Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (1998), no. 2, 325–355. MR 1626745, DOI 10.2307/121011
- Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201–240. MR 1728880, DOI 10.1007/s002229900032
- Guoliang Yu, A characterization of the image of the Baum-Connes map, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 649–657. MR 2732068
Additional Information
- Hao Guo
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77840
- ORCID: 0000-0001-5668-6409
- Email: haoguo@math.tamu.edu
- Peter Hochs
- Affiliation: School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia; and Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- MR Author ID: 786204
- ORCID: 0000-0001-9232-2936
- Email: p.hochs@math.ru.nl
- Varghese Mathai
- Affiliation: School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
- MR Author ID: 231404
- Email: mathai.varghese@adelaide.edu.au
- Received by editor(s): October 8, 2019
- Received by editor(s) in revised form: December 20, 2019, and April 14, 2020
- Published electronically: January 26, 2021
- Additional Notes: The first author was supported in part by funding from the National Science Foundation under grant no. 1564398.
The third author was supported by funding from the Australian Research Council, through the Australian Laureate Fellowship FL170100020. - © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2479-2520
- MSC (2020): Primary 19K56; Secondary 46L08, 53D50, 46L80
- DOI: https://doi.org/10.1090/tran/8202
- MathSciNet review: 4223023